File size: 13,608 Bytes
52e4f53
 
 
 
 
 
58997c7
 
 
52e4f53
 
 
 
58997c7
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58997c7
 
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b180e7
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b180e7
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c443173
 
 
 
 
 
 
 
a6eadde
c443173
 
 
 
6095e9f
 
c443173
 
 
 
 
52e4f53
c443173
 
52e4f53
 
 
 
 
 
 
 
af4ebf7
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af4ebf7
 
52e4f53
 
 
9b180e7
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46ab98e
 
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b180e7
52e4f53
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import torch
import os
import numpy as np
import copy
import gradio as gr
import sys

import spaces

from vita_audio.tokenizer import get_audio_tokenizer
from vita_audio.data.processor.audio_processor import add_audio_input_contiguous


from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, AutoConfig, GenerationConfig



PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."


import math
from numba import jit

@jit
def float_to_int16(audio: np.ndarray) -> np.ndarray:
    am = int(math.ceil(float(np.abs(audio).max())) * 32768)
    am = 32767 * 32768 // am
    return np.multiply(audio, am).astype(np.int16)


def is_wav(file_path):
    wav_extensions = {'.wav'}
    _, ext = os.path.splitext(file_path)
    return ext.lower() in wav_extensions



def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0

    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = "<br></code></pre>"
        else:
            if i > 0 and count % 2 == 1:
                line = line.replace("`", r"\`")
                line = line.replace("<", "&lt;")
                line = line.replace(">", "&gt;")
                line = line.replace(" ", "&nbsp;")
                line = line.replace("*", "&ast;")
                line = line.replace("_", "&lowbar;")
                line = line.replace("-", "&#45;")
                line = line.replace(".", "&#46;")
                line = line.replace("!", "&#33;")
                line = line.replace("(", "&#40;")
                line = line.replace(")", "&#41;")
                line = line.replace("$", "&#36;")
            lines[i] = "<br>" + line

    return "".join(lines)



def _launch_demo(model, tokenizer, audio_tokenizer):

    @spaces.GPU(duration=120)
    def predict(_chatbot, task_history,task):
        chat_query = task_history[-1][0]
        print(task_history)

        messages = []

        audio_path_list =[]
        if task == 'Spoken QA':
            messages = [
            {
                "role": "system",
                #"content": "Your Name: Luke\nYour Gender: male\n\nRespond in a text-audio interleaved manner.",
                # "content": "Your Name: Lucy\nYour Gender: female\nRespond in a text-audio interleaved manner.",
                "content": "Your Name: Omni\nYour Gender: female\nRespond in a text-audio interleaved manner.",
            },
            ]
            for i, (q, a) in enumerate(task_history):

                if isinstance(q, (tuple, list)) and is_wav(q[0]):
                    audio_path_list.append(q[0])
                    messages = messages + [
                    {
                        "role": "user",
                        "content": f"\n<|audio|>",
                    },
                ]
                else:
                    messages = messages + [
                        {
                            "role": "user",
                            "content": q ,
                        },
                    ]
                if a != None:
                    messages = messages + [
                        {
                            "role": "assistant",
                            "content": a ,
                        },
                    ]
            model.generation_config.do_sample = False

        elif task == 'TTS':
            for i, (q, a) in enumerate(task_history):

                if isinstance(q, (tuple, list)) and is_wav(q[0]):
                    audio_path_list.append(q[0])
                    messages = messages + [
                        {
                            "role": "user",
                            "content": f"\n<|audio|>",
                        },
                    ]
                else:
                    messages = messages + [
                        {
                            "role": "user",
                            "content": f'Convert the text to speech.\n{q}' ,
                        },
                    ]
                if a != None:
                    messages = messages + [
                        {
                            "role": "assistant",
                            "content": a ,
                        },
                    ]
            model.generation_config.do_sample = True
        elif task == 'ASR':
            for i, (q, a) in enumerate(task_history):

                if isinstance(q, (tuple, list)) and is_wav(q[0]):
                    audio_path_list.append(q[0])
                    messages = messages + [
                        {
                            "role": "user",
                            "content": f"Convert the speech to text.\n<|audio|>",
                        },
                    ]
                else:
                    messages = messages + [
                        {
                            "role": "user",
                            "content": f"{q}" ,
                        },
                    ]
                if a != None:
                    messages = messages + [
                        {
                            "role": "assistant",
                            "content": a ,
                        },
                    ]
                model.generation_config.do_sample = False


        
        add_generation_prompt =True
        input_ids = tokenizer.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=add_generation_prompt,
            # return_tensors="pt",
        )


        input_ids, audios, audio_indices = add_audio_input_contiguous(
            input_ids, audio_path_list, tokenizer, audio_tokenizer
        )


        input_ids = torch.tensor([input_ids], dtype=torch.long).to("cuda")

        print("input", tokenizer.decode(input_ids[0], skip_special_tokens=False), flush=True)


        if audio_path_list == []:
            audios = None
            audio_indices = None
        
        outputs = model.generate(
            input_ids,
            audios=audios,
            audio_indices=audio_indices,
        )

        output = tokenizer.decode(outputs[0], skip_special_tokens=False)
        # print(f"{output=}", flush=True)

        audio_offset = tokenizer.convert_tokens_to_ids("<|audio_0|>")
        begin_of_audio = tokenizer.convert_tokens_to_ids("<|begin_of_audio|>")
        end_of_audio = tokenizer.convert_tokens_to_ids("<|end_of_audio|>")
        im_end = tokenizer.convert_tokens_to_ids("<|im_end|>")
        response = outputs[0][len(input_ids[0]):]
        
        audio_tokens = []
        text_tokens = []
        for token_id in response:
            if token_id >= audio_offset:
                audio_tokens.append(token_id - audio_offset)
            elif (token_id.item() != begin_of_audio) and (token_id.item() != end_of_audio) and (token_id.item() != im_end):
                text_tokens.append(token_id)

        if len(audio_tokens) > 0:
            tts_speech = audio_tokenizer.decode(audio_tokens)
            audio_np = float_to_int16(tts_speech.cpu().numpy())
            tts_speech = (22050,audio_np)
        else:
            tts_speech = None

        # import pdb;pdb.set_trace()
        history_response = tokenizer.decode(text_tokens)
        task_history[-1] = (chat_query, history_response)

        _chatbot[-1] = (chat_query, history_response)
        # print("query",chat_query)
        # print("task_history",task_history)
        # print(_chatbot)
        # print("answer:  ",outputs)
        return _chatbot, tts_speech



    def add_text(history, task_history, text):
        task_text = text
        # import pdb;pdb.set_trace()
        if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
            task_text = text[:-1]
        history = history + [(_parse_text(text), None)]
        task_history = task_history + [(task_text, None)]
        return history, task_history, ""


    def add_audio(history, task_history, file):
        print(file)
        if file is None:
            return history, task_history
        history = history + [((file,), None)]
        task_history = task_history + [((file,), None)]
        return history, task_history




    def reset_user_input():
        # import pdb;pdb.set_trace()
        return gr.update(value="")

    def reset_state(task_history):
        task_history.clear()
        return []



    font_size = "2.5em"
    html = f"""
    <p align="center" style="font-size: {font_size}; line-height: 1;">
        <span style="display: inline-block; vertical-align: middle;">VITA-Audio-Plus-Vanilla</span>
    </p>
    <center>
    <font size=3>
    <p>
        <b>VITA-Audio</b> has been fully open-sourced on <a href='https://huggingface.co/VITA-MLLM'>😊 Huggingface</a> and <a href='https://github.com/VITA-MLLM/VITA-Audio'>🌟 GitHub</a>. If you find VITA-Audio useful, a like❤️ or a star🌟 would be appreciated.
    </p>
    </font>
    <font size=3>
    <p>
        The deployment of the VITA-Audio-Plus-Vanilla model employs a non-streaming deployment approach.
        For the ASR and TTS tasks, only single-turn dialogues are supported. In the Spoken QA task, generated text is used as dialogue history to reduce the context length.
    </p>
    </font>
    </center>
    """

    with gr.Blocks(title="VITA-Audio-Plus-Vanilla") as demo:
        gr.HTML(html)
        
        chatbot = gr.Chatbot(label='VITA-Audio-Plus-Vanilla', elem_classes="control-height", height=500)
        query = gr.Textbox(lines=2, label='Text Input')
        task_history = gr.State([])
        with gr.Row():
            add_text_button = gr.Button("Submit Text (提交文本)")
            add_audio_button = gr.Button("Submit Audio (提交音频)")
            empty_bin = gr.Button("🧹 Clear History (清除历史)")
            task = gr.Radio(
                        choices = ["ASR", "TTS", "Spoken QA"], label="TASK", value = 'Spoken QA'
                    )

        with gr.Row(scale=1):
                
                record_btn = gr.Audio(sources=[ "microphone","upload"], type="filepath", label="🎤 Record or Upload Audio (录音或上传音频)", show_download_button=True, waveform_options=gr.WaveformOptions(sample_rate=16000))
                audio_output = gr.Audio(label="Play", streaming=True,
                                        autoplay=True, show_download_button=True)
            


        add_text_button.click(add_text, [chatbot, task_history, query], [chatbot, task_history], show_progress=True).then(
            reset_user_input, [], [query]
        ).then(
                predict, [chatbot, task_history,task], [chatbot,audio_output], show_progress=True  
        )

       
        empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)


        add_audio_button.click(add_audio, [chatbot, task_history,record_btn], [chatbot, task_history], show_progress=True).then(
                predict, [chatbot, task_history,task], [chatbot,audio_output], show_progress=True   
        )


    demo.launch(
        show_error=True,
    )

def main():

    model_name_or_path = "VITA-MLLM/VITA-Audio-Plus-Vanilla"

    device_map = "cuda:0"

    sys.path.append("third_party/GLM-4-Voice/")
    sys.path.append("third_party/GLM-4-Voice/cosyvoice/")
    sys.path.append("third_party/GLM-4-Voice/third_party/Matcha-TTS/")

    from huggingface_hub import snapshot_download
    audio_tokenizer_path = snapshot_download(repo_id="THUDM/glm-4-voice-tokenizer")
    flow_path = snapshot_download(repo_id="THUDM/glm-4-voice-decoder")
    
    audio_tokenizer_rank = 0
    audio_tokenizer_type = "sensevoice_glm4voice"

    torch_dtype = torch.bfloat16
    audio_tokenizer = get_audio_tokenizer(
        audio_tokenizer_path, audio_tokenizer_type, flow_path=flow_path, rank=audio_tokenizer_rank
    )
    audio_tokenizer.load_model()
    
    from evaluation.get_chat_template import qwen2_chat_template as chat_template

    tokenizer = AutoTokenizer.from_pretrained(
        model_name_or_path,
        trust_remote_code=True,
        chat_template=chat_template,
    )
    # print(f"{tokenizer=}")
    # print(f"{tokenizer.get_chat_template()=}")


    model = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        trust_remote_code=True,
        device_map=device_map,
        torch_dtype=torch_dtype,
        attn_implementation="flash_attention_2",
    ).eval()

    # print(f"{model.config.model_type=}")

    model.generation_config = GenerationConfig.from_pretrained(
        model_name_or_path, trust_remote_code=True
    )

    model.generation_config.max_new_tokens = 4096
    model.generation_config.chat_format = "chatml"
    model.generation_config.max_window_size = 8192
    model.generation_config.use_cache = True
    model.generation_config.do_sample = True
    model.generation_config.temperature = 1.0
    model.generation_config.top_k = 50
    model.generation_config.top_p = 1.0
    model.generation_config.num_beams = 1
    model.generation_config.pad_token_id = tokenizer.pad_token_id
    model.generation_config.mtp_inference_mode = [8192,10]


    _launch_demo(model, tokenizer, audio_tokenizer)




if __name__ == '__main__':

    main()