Spaces:
Running
on
Zero
Running
on
Zero
import glob | |
import io | |
import logging | |
import math | |
import os | |
import tarfile | |
import uuid | |
import safetensors | |
import torch | |
from transformers import WhisperFeatureExtractor, WhisperTokenizerFast | |
import torchaudio | |
from transformers import WhisperFeatureExtractor | |
from speech_tokenizer.modeling_whisper import WhisperVQEncoder | |
from flow_inference import AudioDecoder | |
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank | |
from funasr.models.sense_voice.model import SenseVoiceSmall | |
from .constants import ( | |
AUD_CONTEXT_TOKEN, | |
AUD_END_TOKEN, | |
AUD_START_TOKEN, | |
AUD_TAG_TOKEN, | |
BOX_END_TOKEN, | |
BOX_START_TOKEN, | |
IMG_CONTEXT_TOKEN, | |
IMG_END_TOKEN, | |
IMG_START_TOKEN, | |
IMG_TAG_TOKEN, | |
PATCH_CONTEXT_TOKEN, | |
PATCH_END_TOKEN, | |
PATCH_START_TOKEN, | |
QUAD_END_TOKEN, | |
QUAD_START_TOKEN, | |
REF_END_TOKEN, | |
REF_START_TOKEN, | |
VID_CONTEXT_TOKEN, | |
VID_END_TOKEN, | |
VID_START_TOKEN, | |
VID_TAG_TOKEN, | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
def update_tokenizer_for_sensevoice_glm4voice(tokenizer): | |
token_list = [ | |
IMG_START_TOKEN, | |
IMG_END_TOKEN, | |
IMG_CONTEXT_TOKEN, | |
VID_START_TOKEN, | |
VID_END_TOKEN, | |
VID_CONTEXT_TOKEN, | |
PATCH_START_TOKEN, | |
PATCH_END_TOKEN, | |
PATCH_CONTEXT_TOKEN, | |
AUD_START_TOKEN, | |
AUD_END_TOKEN, | |
AUD_CONTEXT_TOKEN, | |
QUAD_START_TOKEN, | |
QUAD_END_TOKEN, | |
REF_START_TOKEN, | |
REF_END_TOKEN, | |
BOX_START_TOKEN, | |
BOX_END_TOKEN, | |
IMG_TAG_TOKEN, | |
VID_TAG_TOKEN, | |
AUD_TAG_TOKEN, | |
] | |
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True) | |
token_list = [f"<|audio_{i}|>" for i in range(16384)] | |
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=False) | |
# logger.info(f"tokenizer {tokenizer}") | |
return tokenizer | |
class SenseVoiceGLM4VoiceTokenizer: | |
def __init__(self, model_name_or_path, flow_path=None, rank=None): | |
self.model_name_or_path = model_name_or_path | |
self.flow_path = flow_path | |
if rank is None and torch.distributed.is_initialized(): | |
rank = torch.distributed.get_rank() | |
self.rank = rank % 8 | |
else: | |
self.rank = rank | |
logger.info(f"{self.rank=}") | |
self.sample_rate = 16000 | |
self.is_discrete = True | |
self.is_contiguous = True | |
# # T A | |
# text_audio_interval_ratio = [13, 26] | |
# # T A T A T A | |
# text_audio_interval_ratio = [1, 4, 3, 8, 4, 10] | |
# # T A T A | |
# text_audio_interval_ratio = [1, 10, 4, 10] | |
# self.text_audio_interval_ratio = text_audio_interval_ratio | |
def load_model(self): | |
if hasattr(self, "whisper_model"): | |
return | |
import faulthandler | |
faulthandler.enable() | |
if self.rank is not None: | |
self.device = f"cuda:{self.rank}" | |
#torch.cuda.set_device(self.rank) | |
else: | |
self.device = "cpu" | |
logger.info(f"{self.device=} Loading SenseVoiceSmall") | |
from huggingface_hub import snapshot_download | |
model_dir = snapshot_download(repo_id="FunAudioLLM/SenseVoiceSmall") | |
_, self.kwargs = SenseVoiceSmall.from_pretrained(model=model_dir, device=self.device) | |
logger.info(f"{self.device=} Loading SenseVoiceSmall Done") | |
logger.info(f"{self.device=} Loading GLM4VoiceTokenizer") | |
self.whisper_model = ( | |
WhisperVQEncoder.from_pretrained(self.model_name_or_path).eval().to(self.device) | |
) | |
self.feature_extractor = WhisperFeatureExtractor.from_pretrained(self.model_name_or_path) | |
if self.flow_path is not None: | |
flow_config = os.path.join(self.flow_path, "config.yaml") | |
flow_checkpoint = os.path.join(self.flow_path, "flow.pt") | |
hift_checkpoint = os.path.join(self.flow_path, "hift.pt") | |
# Flow & Hift | |
self.audio_decoder = AudioDecoder( | |
config_path=flow_config, | |
flow_ckpt_path=flow_checkpoint, | |
hift_ckpt_path=hift_checkpoint, | |
device=self.device, | |
) | |
logger.info(f"{self.device=} Loading GLM4VoiceTokenizer Done") | |
def encode(self, audio_path, is_discrete=False, is_contiguous=True, **kwargs): | |
if not hasattr(self, "whisper_model"): | |
self.load_model() | |
assert not (is_discrete and is_contiguous) | |
assert is_discrete or is_contiguous | |
if is_discrete: | |
audio_tokens = extract_speech_token( | |
self.whisper_model, self.feature_extractor, [audio_path], device=self.device | |
)[0] | |
return audio_tokens | |
if is_contiguous: | |
audio, sample_rate = torchaudio.load(audio_path) | |
audio = audio.mean(0) | |
if sample_rate != self.sample_rate: | |
if sample_rate not in _resample_buffer: | |
_resample_buffer[sample_rate] = torchaudio.transforms.Resample( | |
orig_freq=sample_rate, new_freq=self.sample_rate | |
).to(self.device) | |
audio = audio.to(self.device) | |
audio = _resample_buffer[sample_rate](audio[None, :])[0, :] | |
audio = audio.cpu() | |
# resampler = torchaudio.transforms.Resample( | |
# orig_freq=sample_rate, new_freq=self.sample_rate | |
# ) | |
# audio = resampler(audio[None, :])[0, :] | |
# audio = audio.to(self.device) | |
frontend = self.kwargs["frontend"] | |
speech, speech_lengths = extract_fbank(audio, data_type="sound", frontend=frontend) | |
speech = speech[0] | |
# print(f"{speech_lengths=}") | |
# print(f"{speech.size()=}") | |
return speech | |
def decode(self, audio_tokens, option_steps=10, **kwargs): | |
if not hasattr(self, "whisper_model"): | |
self.load_model() | |
this_uuid = str(uuid.uuid4()) | |
this_uuid = "abc" | |
tts_token = torch.tensor(audio_tokens, device=self.device).unsqueeze(0) | |
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(self.device) | |
prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device) | |
tts_speech, tts_mel = self.audio_decoder.token2wav( | |
tts_token, | |
uuid=this_uuid, | |
prompt_token=flow_prompt_speech_token.to(self.device), | |
prompt_feat=prompt_speech_feat.to(self.device), | |
finalize=True, | |
option_steps=option_steps, | |
) | |
tts_speechs = [] | |
tts_speechs.append(tts_speech.squeeze()) | |
tts_speech = torch.cat(tts_speechs, dim=-1).cpu() | |
return tts_speech | |
def apply_to_role(self, role, **kwargs): | |
is_discrete = kwargs.get("is_discrete", False) | |
if is_discrete and role in ["assistant", "gpt"]: | |
return True | |
is_contiguous = kwargs.get("is_contiguous", False) | |
if is_contiguous and role in ["user", "human"]: | |
return True | |
return False | |
_resample_buffer: dict[int, torchaudio.transforms.Resample] = {} | |
def extract_speech_token(model, feature_extractor, utts, device="cuda"): | |
with torch.no_grad(): | |
audios, indices = [], [] | |
for idx, utt in enumerate(utts): | |
if isinstance(utt, tuple): | |
audio, sample_rate = utt | |
else: | |
audio, sample_rate = torchaudio.load(utt) | |
audio = audio.to(device) | |
if sample_rate != 16000: | |
if sample_rate not in _resample_buffer: | |
_resample_buffer[sample_rate] = torchaudio.transforms.Resample( | |
orig_freq=sample_rate, new_freq=16000 | |
).to(device) | |
audio = _resample_buffer[sample_rate](audio) | |
# if audio.shape[0] > 1: | |
# audio = audio[:1] | |
audio = audio[0] | |
audio = audio.cpu().numpy() | |
time_step = 0 | |
while time_step * 16000 < audio.shape[0]: | |
audio_segment = audio[time_step * 16000 : (time_step + 30) * 16000] | |
audios.append(audio_segment) | |
indices.append(idx) | |
time_step += 30 | |
pooling_kernel_size = model.config.pooling_kernel_size or 1 | |
stride = ( | |
model.conv1.stride[0] | |
* model.conv2.stride[0] | |
* pooling_kernel_size | |
* feature_extractor.hop_length | |
) | |
all_speech_tokens = [[] for _ in range(len(utts))] | |
batch_size = 128 | |
for start in range(0, len(audios), batch_size): | |
features = feature_extractor( | |
audios[start : start + batch_size], | |
sampling_rate=16000, | |
return_attention_mask=True, | |
return_tensors="pt", | |
device=device, | |
padding="longest", | |
pad_to_multiple_of=stride, | |
) | |
features = features.to(device=device) | |
outputs = model(**features) | |
speech_tokens = outputs.quantized_token_ids | |
attention_mask = features.attention_mask[ | |
:, :: model.conv1.stride[0] * model.conv2.stride[0] | |
] | |
attention_mask = attention_mask[:, :: model.config.pooling_kernel_size] | |
assert attention_mask.shape == speech_tokens.shape | |
for i in range(len(speech_tokens)): | |
idx = indices[start + i] | |
speech_token = speech_tokens[i][attention_mask[i].bool()].tolist() | |
all_speech_tokens[idx].extend(speech_token) | |
return all_speech_tokens | |