Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import os | |
import uuid | |
import torch | |
import torchaudio | |
from .constants import ( | |
AUD_END_TOKEN, | |
AUD_START_TOKEN, | |
AUD_TAG_TOKEN, | |
BOX_END_TOKEN, | |
BOX_START_TOKEN, | |
IMG_CONTEXT_TOKEN, | |
IMG_END_TOKEN, | |
IMG_START_TOKEN, | |
IMG_TAG_TOKEN, | |
PATCH_CONTEXT_TOKEN, | |
PATCH_END_TOKEN, | |
PATCH_START_TOKEN, | |
QUAD_END_TOKEN, | |
QUAD_START_TOKEN, | |
REF_END_TOKEN, | |
REF_START_TOKEN, | |
VID_CONTEXT_TOKEN, | |
VID_END_TOKEN, | |
VID_START_TOKEN, | |
VID_TAG_TOKEN, | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
def update_tokenizer_for_snac(tokenizer): | |
token_list = [ | |
IMG_START_TOKEN, | |
IMG_END_TOKEN, | |
IMG_CONTEXT_TOKEN, | |
VID_START_TOKEN, | |
VID_END_TOKEN, | |
VID_CONTEXT_TOKEN, | |
PATCH_START_TOKEN, | |
PATCH_END_TOKEN, | |
PATCH_CONTEXT_TOKEN, | |
AUD_START_TOKEN, | |
AUD_END_TOKEN, | |
QUAD_START_TOKEN, | |
QUAD_END_TOKEN, | |
REF_START_TOKEN, | |
REF_END_TOKEN, | |
BOX_START_TOKEN, | |
BOX_END_TOKEN, | |
IMG_TAG_TOKEN, | |
VID_TAG_TOKEN, | |
AUD_TAG_TOKEN, | |
] | |
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True) | |
token_list = [f"<|audio_{i}|>" for i in range(4 * 4096)] | |
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=False) | |
# logger.info(f"tokenizer {tokenizer}") | |
return tokenizer | |
class SNACTokenizer: | |
def __init__(self, model_name_or_path, rank=None): | |
self.model_name_or_path = model_name_or_path | |
if rank is None and torch.distributed.is_initialized(): | |
rank = torch.distributed.get_rank() | |
self.rank = rank % 8 | |
else: | |
self.rank = rank | |
logger.info(f"{self.rank=}") | |
self.is_discrete = True | |
self.is_contiguous = False | |
# T A | |
text_audio_interval_ratio = [13, 26] | |
self.text_audio_interval_ratio = text_audio_interval_ratio | |
def load_model(self): | |
if hasattr(self, "model"): | |
return | |
logger.info("Loading SNACTokenizer") | |
from snac import SNAC | |
self.device = f"cuda:{self.rank}" | |
torch.cuda.set_device(self.rank) | |
self.model = SNAC.from_pretrained(self.model_name_or_path).eval().to(self.device) | |
def encode(self, audio_path, **kwargs): | |
if not hasattr(self, "model"): | |
self.load_model() | |
audio, sampling_rate = torchaudio.load(audio_path) | |
audio = torchaudio.transforms.Resample( | |
orig_freq=sampling_rate, new_freq=self.model.sampling_rate | |
)(audio) | |
audio = audio.unsqueeze(0) | |
audio = audio.to(self.device) | |
with torch.inference_mode(): | |
codes = self.model.encode(audio) | |
codes = shift_code(codes, self.model.codebook_size, self.model.vq_strides) | |
audio_tokens = codes.cpu().tolist() | |
return audio_tokens | |
def decode(self, audio_tokens, **kwargs): | |
if not hasattr(self, "model"): | |
self.load_model() | |
while len(audio_tokens) % sum(self.model.vq_strides): | |
audio_tokens += [ | |
audio_tokens[-1] + 4096, | |
] | |
codes = torch.tensor(audio_tokens, device=self.device) | |
codes = inverse_shift_code(codes, self.model.codebook_size, self.model.vq_strides) | |
codes = [torch.clamp(x, min=0, max=self.model.codebook_size - 1) for x in codes] | |
# logger.info(f"codes {codes} {[x.size() for x in codes]}") | |
with torch.inference_mode(): | |
audio_hat = self.model.decode(codes) | |
# logger.info(f"audio_hat {audio_hat.size()}") | |
audio_hat = audio_hat.squeeze(0).squeeze(0).cpu() | |
return audio_hat | |
def apply_to_role(self, role, **kwargs): | |
is_discrete = kwargs.get("is_discrete", False) | |
if is_discrete: | |
return True | |
is_contiguous = kwargs.get("is_contiguous", False) | |
if is_contiguous: | |
return False | |
return True | |
def shift_code(codes, codebook_size, vq_strides): | |
# codes: [torch.Size([1, 43]), torch.Size([1, 86]), torch.Size([1, 172])] | |
# 3 * 4096 new vocabularies | |
# codes = torch.cat([x.reshape(1, -1, vq_strides[-i-1]) + i * codebook_size for i, x in enumerate(codes)], dim=-1).reshape(-1) | |
# 7 * 4096 new vocabularies | |
codes = [x.reshape(1, -1, s) for s, x in zip(vq_strides[::-1], codes)] | |
codes = torch.cat( | |
[ | |
x + i * codebook_size | |
for i, x in enumerate(torch.cat(codes, dim=-1).chunk(sum(vq_strides), dim=-1)) | |
], | |
dim=-1, | |
).reshape(-1) | |
return codes | |
def inverse_shift_code(codes, codebook_size, vq_strides): | |
# codes: torch.Size([301]) | |
# 3 * 4096 new vocabularies | |
# codes = [x.reshape(1, -1) - i * codebook_size for i, x in enumerate(codes.reshape(1, -1, sum(vq_strides)).split(vq_strides[::-1], dim=-1))] | |
# 7 * 4096 new vocabularies | |
codes = torch.cat( | |
[ | |
x - i * codebook_size | |
for i, x in enumerate( | |
codes.reshape(1, -1, sum(vq_strides)).chunk(sum(vq_strides), dim=-1) | |
) | |
], | |
dim=-1, | |
).split(vq_strides[::-1], dim=-1) | |
codes = [x.reshape(1, -1) for x in codes] | |
return codes | |