Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
# Prediction function
|
| 6 |
+
def predict(input_img):
|
| 7 |
+
# Get the predictions from the pipeline
|
| 8 |
+
predictions = pipe(input_img)
|
| 9 |
+
|
| 10 |
+
result = {p["label"]: p["score"] for p in predictions}
|
| 11 |
+
|
| 12 |
+
# Return the image and the top predictions as a string
|
| 13 |
+
top_labels = [f"{label}: {score:.2f}" for label, score in result.items()]
|
| 14 |
+
return input_img, "\n".join(top_labels)
|
| 15 |
+
|
| 16 |
+
# Create the Gradio interface
|
| 17 |
+
gradio_app = gr.Interface(
|
| 18 |
+
fn=predict,
|
| 19 |
+
inputs=gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"),
|
| 20 |
+
outputs=[
|
| 21 |
+
gr.Image(label="Processed Image"),
|
| 22 |
+
gr.Textbox(label="Result", placeholder="Top predictions here")
|
| 23 |
+
],
|
| 24 |
+
title="Age Classification",
|
| 25 |
+
description="Upload or capture an image to classify age using the SigLIP2 model."
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Launch the app
|
| 29 |
+
gradio_app.launch()
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
if _name=="main_":
|
| 33 |
+
gradio_app.launch()
|