sherab65 commited on
Commit
967a22b
·
verified ·
1 Parent(s): ba5fb94

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -9
app.py CHANGED
@@ -1,17 +1,46 @@
1
- from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  from PIL import Image
4
 
5
- # Initialize the image classification pipeline with the specific model
6
- pipe = pipeline("image-classification", model="prithivMLmods/Age-Classification-SigLIP2")
7
-
8
  # Prediction function
9
  def predict(input_img):
10
  # Get the predictions from the pipeline
11
- predictions = pipe(input_img)
12
-
13
  result = {p["label"]: p["score"] for p in predictions}
14
-
15
  # Return the image and the top predictions as a string
16
  top_labels = [f"{label}: {score:.2f}" for label, score in result.items()]
17
  return input_img, "\n".join(top_labels)
@@ -25,8 +54,6 @@ gradio_app = gr.Interface(
25
  gr.Textbox(label="Result", placeholder="Top predictions here")
26
  ],
27
  title="Age Classification",
28
- description="Upload or capture an image to classify age using the SigLIP2 model."
29
  )
30
 
31
- # Launch the app
32
  gradio_app.launch()
 
1
+ # from transformers import pipeline
2
+ # import gradio as gr
3
+ # from PIL import Image
4
+
5
+ # # Initialize the image classification pipeline with the specific model
6
+ # pipe = pipeline("image-classification", model="prithivMLmods/Age-Classification-SigLIP2")
7
+
8
+ # # Prediction function
9
+ # def predict(input_img):
10
+ # # Get the predictions from the pipeline
11
+ # predictions = pipe(input_img)
12
+
13
+ # result = {p["label"]: p["score"] for p in predictions}
14
+
15
+ # # Return the image and the top predictions as a string
16
+ # top_labels = [f"{label}: {score:.2f}" for label, score in result.items()]
17
+ # return input_img, "\n".join(top_labels)
18
+
19
+ # # Create the Gradio interface
20
+ # gradio_app = gr.Interface(
21
+ # fn=predict,
22
+ # inputs=gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"),
23
+ # outputs=[
24
+ # gr.Image(label="Processed Image"),
25
+ # gr.Textbox(label="Result", placeholder="Top predictions here")
26
+ # ],
27
+ # title="Age Classification",
28
+ # description="Upload or capture an image to classify age using the SigLIP2 model."
29
+ # )
30
+
31
+ # # Launch the app
32
+ # gradio_app.launch()
33
+
34
  import gradio as gr
35
  from PIL import Image
36
 
 
 
 
37
  # Prediction function
38
  def predict(input_img):
39
  # Get the predictions from the pipeline
40
+ predictions = classifier(input_img)
41
+
42
  result = {p["label"]: p["score"] for p in predictions}
43
+
44
  # Return the image and the top predictions as a string
45
  top_labels = [f"{label}: {score:.2f}" for label, score in result.items()]
46
  return input_img, "\n".join(top_labels)
 
54
  gr.Textbox(label="Result", placeholder="Top predictions here")
55
  ],
56
  title="Age Classification",
 
57
  )
58
 
 
59
  gradio_app.launch()