Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,677 Bytes
c3f3b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) and MoE-LLaVA(https://github.com/PKU-YuanGroup/MoE-LLaVA)
# Copyright 2024 Jiachen Li
# ------------------------------------------------------------------------
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModelForCausalLM, \
MixtralConfig, MixtralModel, MixtralForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from .smoe_mixtral_helper import SMoECausalLMOutputWithPast, MixtralDecoderLayerMOEBlock_forward
class LlavaMixtralConfig(MixtralConfig):
model_type = "llava_mixtral"
class LlavaMixtralModel(LlavaMetaModel, MixtralModel):
config_class = LlavaMixtralConfig
def __init__(self, config: MixtralConfig):
super(LlavaMixtralModel, self).__init__(config)
class LlavaMixtralForCausalLM(MixtralForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaMixtralConfig
def __init__(self, config):
super(MixtralForCausalLM, self).__init__(config)
self.model = LlavaMixtralModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
clip_balance_loss,
clip_router_z_loss,
mlp_balance_loss,
mlp_router_z_loss
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
image_sizes
)
output_router_logits = True
### We set output_router_logits to True and squeeze bzloss into outputs.router_logits. This hack implementation needs to be fixed
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
b_loss = None
z_loss = None
if self.config.training:
if self.config.mlp_smoe or self.config.clip_smoe:
if self.config.local_rank == 0:
print('language loss: ', loss.item())
if self.config.mlp_smoe:
mlp_balance_loss = mlp_balance_loss.sum(dim=-1).mean()
mlp_balance_loss = self.config.balance_loss_coef * mlp_balance_loss
loss += mlp_balance_loss
mlp_router_z_loss = mlp_router_z_loss.sum(dim=-1).mean()
mlp_router_z_loss = self.config.router_z_loss_coef * mlp_router_z_loss
loss += mlp_router_z_loss
if self.config.local_rank == 0:
print('mlp balance loss: ', mlp_balance_loss.item(), 'mlp router z loss: ', mlp_router_z_loss.item())
if self.config.clip_smoe:
clip_balance_loss = clip_balance_loss.sum(dim=-1).mean()
clip_balance_loss = self.config.balance_loss_coef * clip_balance_loss
loss += clip_balance_loss
clip_router_z_loss = clip_router_z_loss.sum(dim=-1).mean()
clip_router_z_loss = self.config.router_z_loss_coef * clip_router_z_loss
loss += clip_router_z_loss
if self.config.local_rank == 0:
print('clip balance loss: ', clip_balance_loss.item(), 'clip router z loss: ', clip_router_z_loss.item())
balance_loss = [loss_pair[0] for loss_pair in outputs.router_logits]
b_loss = sum(balance_loss) / len(balance_loss)
b_loss = self.config.balance_loss_coef * b_loss
loss += b_loss
router_z_loss = [loss_pair[1] for loss_pair in outputs.router_logits]
z_loss = sum(router_z_loss) / len(balance_loss)
z_loss = self.config.router_z_loss_coef * z_loss
loss += z_loss
if self.config.local_rank == 0:
print('llm balance loss: ', b_loss.item(), 'llm router z loss: ', z_loss.item())
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return SMoECausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def initialize_smoe_modules(self, model_args):
for m in self.model.layers:
m.block_sparse_moe.forward = MixtralDecoderLayerMOEBlock_forward(m.block_sparse_moe)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_,
_,
_,
_,
_
) = self.prepare_inputs_labels_for_multimodal(
inputs,
position_ids,
attention_mask,
None,
None,
images,
image_sizes=image_sizes
)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
inputs['images'] = images
if image_sizes is not None:
inputs['image_sizes'] = image_sizes
return inputs
AutoConfig.register("llava_mixtral", LlavaMixtralConfig)
AutoModelForCausalLM.register(LlavaMixtralConfig, LlavaMixtralForCausalLM)
|