File size: 7,854 Bytes
05ff3be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import logging
import torch.nn as nn
import torch
import torch.nn.functional as F
from   networks import ops

def conv5x5(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """5x5 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride,
                     padding=2, groups=groups, bias=False, dilation=dilation)


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, upsample=None, norm_layer=None, large_kernel=False):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self.stride = stride
        conv = conv5x5 if large_kernel else conv3x3
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        if self.stride > 1:
            self.conv1 = ops.SpectralNorm(nn.ConvTranspose2d(inplanes, inplanes, kernel_size=4, stride=2, padding=1, bias=False))
        else:
            self.conv1 = ops.SpectralNorm(conv(inplanes, inplanes))
        self.bn1 = norm_layer(inplanes)
        self.activation = nn.LeakyReLU(0.2, inplace=True)
        self.conv2 = ops.SpectralNorm(conv(inplanes, planes))
        self.bn2 = norm_layer(planes)
        self.upsample = upsample

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.activation(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.upsample is not None:
            identity = self.upsample(x)

        out += identity
        out = self.activation(out)

        return out

class SAM_Decoder_Deep(nn.Module):
    def __init__(self, nc, layers, block=BasicBlock, norm_layer=None, large_kernel=False, late_downsample=False):
        super(SAM_Decoder_Deep, self).__init__()
        self.logger = logging.getLogger("Logger")
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer
        self.large_kernel = large_kernel
        self.kernel_size = 5 if self.large_kernel else 3

        #self.inplanes = 512 if layers[0] > 0 else 256
        self.inplanes = 256
        self.late_downsample = late_downsample
        self.midplanes = 64 if late_downsample else 32

        self.conv1 = ops.SpectralNorm(nn.ConvTranspose2d(self.midplanes, 32, kernel_size=4, stride=2, padding=1, bias=False))
        self.bn1 = norm_layer(32)
        self.leaky_relu = nn.LeakyReLU(0.2, inplace=True)

        self.upsample = nn.UpsamplingNearest2d(scale_factor=2)
        self.tanh = nn.Tanh()
        #self.layer1 = self._make_layer(block, 256, layers[0], stride=2)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 64, layers[2], stride=2)
        self.layer4 = self._make_layer(block, self.midplanes, layers[3], stride=2)

        self.refine_OS1 = nn.Sequential(
            nn.Conv2d(32, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False),
            norm_layer(32),
            self.leaky_relu,
            nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),)
        
        self.refine_OS4 = nn.Sequential(
            nn.Conv2d(64, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False),
            norm_layer(32),
            self.leaky_relu,
            nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),)

        self.refine_OS8 = nn.Sequential(
            nn.Conv2d(128, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False),
            norm_layer(32),
            self.leaky_relu,
            nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if hasattr(m, "weight_bar"):
                    nn.init.xavier_uniform_(m.weight_bar)
                else:
                    nn.init.xavier_uniform_(m.weight)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        for m in self.modules():
            if isinstance(m, BasicBlock):
                nn.init.constant_(m.bn2.weight, 0)

        self.logger.debug(self)

    def _make_layer(self, block, planes, blocks, stride=1):
        if blocks == 0:
            return nn.Sequential(nn.Identity())
        norm_layer = self._norm_layer
        upsample = None
        if stride != 1:
            upsample = nn.Sequential(
                nn.UpsamplingNearest2d(scale_factor=2),
                ops.SpectralNorm(conv1x1(self.inplanes + 4, planes * block.expansion)),
                norm_layer(planes * block.expansion),
            )
        elif self.inplanes != planes * block.expansion:
            upsample = nn.Sequential(
                ops.SpectralNorm(conv1x1(self.inplanes + 4, planes * block.expansion)),
                norm_layer(planes * block.expansion),
            )

        layers = [block(self.inplanes + 4, planes, stride, upsample, norm_layer, self.large_kernel)]
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, norm_layer=norm_layer, large_kernel=self.large_kernel))

        return nn.Sequential(*layers)

    def forward(self, x_os16, img, mask):
        ret = {}
        mask_os16 = F.interpolate(mask, x_os16.shape[2:], mode='bilinear', align_corners=False)
        img_os16 = F.interpolate(img, x_os16.shape[2:], mode='bilinear', align_corners=False)

        x = self.layer2(torch.cat((x_os16, img_os16, mask_os16), dim=1)) # N x 128 x 128 x 128

        x_os8 = self.refine_OS8(x)
        
        mask_os8 = F.interpolate(mask, x.shape[2:], mode='bilinear', align_corners=False)
        img_os8 = F.interpolate(img, x.shape[2:], mode='bilinear', align_corners=False)

        x = self.layer3(torch.cat((x, img_os8, mask_os8), dim=1)) # N x 64 x 256 x 256

        x_os4 = self.refine_OS4(x)

        mask_os4 = F.interpolate(mask, x.shape[2:], mode='bilinear', align_corners=False)
        img_os4 = F.interpolate(img, x.shape[2:], mode='bilinear', align_corners=False)

        x = self.layer4(torch.cat((x, img_os4, mask_os4), dim=1)) # N x 32 x 512 x 512
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.leaky_relu(x) # N x 32 x 1024 x 1024

        x_os1 = self.refine_OS1(x) # N
        
        x_os4 = F.interpolate(x_os4, scale_factor=4.0, mode='bilinear', align_corners=False)
        x_os8 = F.interpolate(x_os8, scale_factor=8.0, mode='bilinear', align_corners=False)
        
        x_os1 = (torch.tanh(x_os1) + 1.0) / 2.0
        x_os4 = (torch.tanh(x_os4) + 1.0) / 2.0
        x_os8 = (torch.tanh(x_os8) + 1.0) / 2.0

        mask_os1 = F.interpolate(mask, x_os1.shape[2:], mode='bilinear', align_corners=False)

        ret['alpha_os1'] = x_os1
        ret['alpha_os4'] = x_os4
        ret['alpha_os8'] = x_os8
        ret['mask'] = mask_os1
        
        return ret