Spaces:
Sleeping
Sleeping
File size: 10,734 Bytes
f1a0c7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
import fitz # PyMuPDF
import easyocr
import os
import tempfile
import numpy as np
import json
import cv2
import re
import csv
import io
import time
import gc
import requests
from datetime import datetime
import pandas as pd
# Configuration
JSON_SAVE_FOLDER = "processed_json"
os.makedirs(JSON_SAVE_FOLDER, exist_ok=True)
# Initialize EasyOCR reader with CPU only
def init_ocr():
return easyocr.Reader(['hi', 'en'], gpu=False) # Force CPU usage
reader = init_ocr()
def process_page_safely(page, page_num, attempt=1):
try:
pix = page.get_pixmap(dpi=200)
img_data = np.frombuffer(pix.samples, dtype=np.uint8).reshape(pix.height, pix.width, pix.n)
if pix.n == 4:
img_data = cv2.cvtColor(img_data, cv2.COLOR_RGBA2RGB)
max_pixels = 2000 * 2000
if img_data.shape[0] * img_data.shape[1] > max_pixels:
half = img_data.shape[0] // 2
top_part = img_data[:half, :]
bottom_part = img_data[half:, :]
results_top = reader.readtext(top_part, detail=1, batch_size=1)
results_bottom = reader.readtext(bottom_part, detail=1, batch_size=1)
results = results_top + results_bottom
else:
results = reader.readtext(img_data, detail=1, batch_size=1)
full_text = []
confidence_scores = []
for (bbox, text, confidence) in results:
cleaned_text = re.sub(r'[oO]', '0', text)
cleaned_text = re.sub(r'[lL]', '1', cleaned_text)
full_text.append(cleaned_text)
confidence_scores.append(confidence)
avg_confidence = sum(confidence_scores)/len(confidence_scores) if confidence_scores else 0
return {
"page": page_num,
"text": "\n".join(full_text),
"confidence": avg_confidence,
"dimensions": {"width": pix.width, "height": pix.height}
}
except Exception as e:
if attempt <= 3:
time.sleep(1)
gc.collect()
return process_page_safely(page, page_num, attempt+1)
return {"error": f"Page {page_num} error after {attempt} attempts: {str(e)}"}
def process_pdf(pdf_file, progress=gr.Progress()):
all_json = []
errors = []
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tf:
tf.write(pdf_file)
temp_pdf_path = tf.name
try:
with fitz.open(temp_pdf_path) as doc:
total_pages = len(doc)
for i in range(total_pages):
progress(i/total_pages, desc=f"Processing page {i+1}/{total_pages}")
page = doc.load_page(i)
page_result = process_page_safely(page, i+1)
if "error" in page_result:
errors.append(page_result["error"])
continue
all_json.append(page_result)
time.sleep(0.5)
gc.collect()
# Generate timestamp for filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
json_filename = f"processed_{timestamp}.json"
json_path = os.path.join(JSON_SAVE_FOLDER, json_filename)
# Save JSON to file with UTF-8 encoding
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(all_json, f, indent=2, ensure_ascii=False)
return (
all_json, # For JSON display
json_path, # For file download
"\n".join(errors) if errors else "No errors" # For error display
)
except Exception as e:
return (
None,
None,
f"Processing error: {str(e)}"
)
finally:
try:
if os.path.exists(temp_pdf_path):
os.unlink(temp_pdf_path)
except:
pass
def chunk_json_by_char_limit(data, char_limit=3500):
chunks = []
current_chunk = []
current_length = 0
for entry in data:
entry_str = json.dumps(entry, ensure_ascii=False)
entry_length = len(entry_str)
if current_length + entry_length > char_limit:
chunks.append(current_chunk)
current_chunk = [entry]
current_length = entry_length
else:
current_chunk.append(entry)
current_length += entry_length
if current_chunk:
chunks.append(current_chunk)
return chunks
def call_llm_api(api_key, json_file_path, repeated_info, debug_mode):
try:
with open(json_file_path, 'r', encoding='utf-8') as f:
full_data = json.load(f)
# NEW: chunk by char limit
json_chunks = chunk_json_by_char_limit(full_data, char_limit=3500)
all_csv_chunks = []
header_preserved = False
debug_info = ""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
for idx, chunk in enumerate(json_chunks):
prompt = f"""
{repeated_info}
Below is a portion of the voter data in JSON format. Please extract all entries into a CSV format with the following columns:
विधानसभा, सेक्शन, मतदाता ID, मतदाता का नाम, अभिभावक का नाम, घर संख्या, आयु, लिंग, फोटो उपलब्ध?
Rules:
1. Use exactly these column headers in Hindi as shown above
2. Separate values with COMMAS (,)
3. For photo availability, use "हाँ" or "नहीं"
4. Do NOT include any extra explanation — only CSV
JSON Data:
{json.dumps(chunk, ensure_ascii=False)}
Respond with ONLY the CSV data (including header ONLY in the first chunk).
""".strip()
payload = {
"model": "google/gemma-3n-e4b-it:free",
"messages": [
{"role": "user", "content": prompt}
],
"temperature": 0.1,
"max_tokens": 2048
}
try:
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers=headers,
json=payload,
timeout=120
)
except Exception as e:
return (
pd.DataFrame({"Error": [f"Network error: {str(e)}"]}),
None,
debug_info,
False
)
if debug_mode:
debug_info += f"\n--- Chunk {idx+1} ---\nStatus: {response.status_code}\n{response.text}\n"
if response.status_code != 200:
return (
pd.DataFrame({"Error": [f"API Error on chunk {idx+1}: {response.text}"]}),
None,
debug_info,
False
)
chunk_csv = response.json()["choices"][0]["message"]["content"].strip()
# Keep header for first chunk only
lines = chunk_csv.splitlines()
if not header_preserved:
all_csv_chunks.append(chunk_csv)
header_preserved = True
else:
if len(lines) > 1:
all_csv_chunks.append("\n".join(lines[1:]))
else:
all_csv_chunks.append("") # if empty or malformed
time.sleep(1.5)
# Combine CSV results
combined_csv = "\n".join(all_csv_chunks)
csv_filename = f"output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
csv_path = os.path.join(JSON_SAVE_FOLDER, csv_filename)
with open(csv_path, 'w', encoding='utf-8-sig', newline='') as f:
f.write(combined_csv)
# Attempt to parse CSV into DataFrame
try:
df = pd.read_csv(io.StringIO(combined_csv))
except Exception as e:
df = pd.DataFrame({"Error": [f"CSV Parsing Error: {str(e)}", combined_csv]})
return (
df,
csv_path,
debug_info if debug_mode else "",
True
)
except Exception as e:
return (
pd.DataFrame({"Error": [str(e)]}),
None,
f"Unexpected error: {str(e)}",
False
)
# Gradio interface
with gr.Blocks(title="Hindi PDF Processor with LLM API") as demo:
gr.Markdown("## 📄 Hindi PDF Processor with LLM API")
gr.Markdown("Process PDFs to extract text and convert to structured CSV using LLM")
with gr.Tab("PDF Processing"):
with gr.Row():
with gr.Column():
pdf_input = gr.File(label="Upload PDF File", type="binary")
pdf_submit = gr.Button("Process PDF")
with gr.Column():
json_display = gr.JSON(label="Extracted JSON Data")
pdf_errors = gr.Textbox(label="Processing Errors")
json_download = gr.File(label="Download JSON File", visible=False)
with gr.Tab("LLM API Processing"):
with gr.Row():
with gr.Column():
api_key = gr.Textbox(label="OpenRouter API Key", type="password")
repeated_info = gr.Textbox(label="Additional Instructions",
value="Extract voter information from the following text:")
debug_mode = gr.Checkbox(label="Enable Debug Mode")
api_submit = gr.Button("Call LLM API")
with gr.Column():
dataframe_output = gr.Dataframe(label="CSV Output", wrap=True)
csv_download = gr.File(label="Download CSV File")
api_debug = gr.Textbox(label="Debug Information", visible=False)
api_status = gr.Textbox(label="API Status", visible=False)
# PDF Processing
pdf_submit.click(
process_pdf,
inputs=[pdf_input],
outputs=[json_display, json_download, pdf_errors]
)
# API Processing
api_submit.click(
call_llm_api,
inputs=[api_key, json_download, repeated_info, debug_mode],
outputs=[dataframe_output, csv_download, api_debug, api_status]
)
# Show/hide debug based on checkbox
debug_mode.change(
lambda x: gr.update(visible=x),
inputs=[debug_mode],
outputs=[api_debug]
)
# Update API status visibility
api_submit.click(
lambda: gr.update(visible=True),
inputs=None,
outputs=[api_status]
)
if __name__ == "__main__":
demo.launch() |