Spaces:
Sleeping
Sleeping
File size: 14,928 Bytes
f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 065043f 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 065043f 78227e9 f1a0c7b 78227e9 065043f 78227e9 065043f f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 78227e9 f1a0c7b 065043f f1a0c7b 065043f 78227e9 f1a0c7b 78227e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import gradio as gr
import fitz # PyMuPDF
import easyocr
import os
import tempfile
import numpy as np
import json
import cv2
import re
import csv
import io
import time
import gc
import requests
from datetime import datetime
import pandas as pd
from pathlib import Path
# Configuration
JSON_SAVE_FOLDER = "processed_json"
os.makedirs(JSON_SAVE_FOLDER, exist_ok=True)
# Initialize EasyOCR reader with CPU only
def init_ocr():
return easyocr.Reader(['hi', 'en'], gpu=False) # Force CPU usage
reader = init_ocr()
def process_page_safely(page, page_num, attempt=1):
try:
pix = page.get_pixmap(dpi=200)
img_data = np.frombuffer(pix.samples, dtype=np.uint8).reshape(pix.height, pix.width, pix.n)
if pix.n == 4:
img_data = cv2.cvtColor(img_data, cv2.COLOR_RGBA2RGB)
max_pixels = 2000 * 2000
if img_data.shape[0] * img_data.shape[1] > max_pixels:
half = img_data.shape[0] // 2
top_part = img_data[:half, :]
bottom_part = img_data[half:, :]
results_top = reader.readtext(top_part, detail=1, batch_size=1)
results_bottom = reader.readtext(bottom_part, detail=1, batch_size=1)
results = results_top + results_bottom
else:
results = reader.readtext(img_data, detail=1, batch_size=1)
full_text = []
confidence_scores = []
for (bbox, text, confidence) in results:
cleaned_text = re.sub(r'[oO]', '0', text)
cleaned_text = re.sub(r'[lL]', '1', cleaned_text)
full_text.append(cleaned_text)
confidence_scores.append(confidence)
avg_confidence = sum(confidence_scores)/len(confidence_scores) if confidence_scores else 0
return {
"page": page_num,
"text": "\n".join(full_text),
"confidence": avg_confidence,
"dimensions": {"width": pix.width, "height": pix.height}
}
except Exception as e:
if attempt <= 3:
time.sleep(1)
gc.collect()
return process_page_safely(page, page_num, attempt+1)
return {"error": f"Page {page_num} error after {attempt} attempts: {str(e)}"}
def process_pdf(pdf_path, progress=gr.Progress()):
all_json = []
errors = []
try:
with fitz.open(pdf_path) as doc:
total_pages = len(doc)
for i in range(total_pages):
progress(i/total_pages, desc=f"Processing page {i+1}/{total_pages}")
page = doc.load_page(i)
page_result = process_page_safely(page, i+1)
if "error" in page_result:
errors.append(page_result["error"])
continue
all_json.append(page_result)
time.sleep(0.5)
gc.collect()
return all_json, errors
except Exception as e:
return None, [f"Processing error: {str(e)}"]
def process_folder(folder_path, progress=gr.Progress()):
folder_name = os.path.basename(folder_path)
all_pdfs_json = []
all_errors = []
# Get all PDF files in the folder
pdf_files = [f for f in os.listdir(folder_path) if f.lower().endswith('.pdf')]
if not pdf_files:
return None, None, f"No PDF files found in folder: {folder_name}"
# Process each PDF in the folder
for i, pdf_file in enumerate(pdf_files):
progress(i/len(pdf_files), desc=f"Processing {pdf_file} in {folder_name}")
pdf_path = os.path.join(folder_path, pdf_file)
# Create temp file (needed for fitz)
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tf:
with open(pdf_path, 'rb') as f:
tf.write(f.read())
temp_pdf_path = tf.name
try:
pdf_json, errors = process_pdf(temp_pdf_path, progress)
if pdf_json:
all_pdfs_json.extend(pdf_json)
if errors:
all_errors.extend(errors)
finally:
try:
if os.path.exists(temp_pdf_path):
os.unlink(temp_pdf_path)
except:
pass
if not all_pdfs_json:
return None, None, "\n".join(all_errors) if all_errors else "No data extracted from any PDF"
# Save combined JSON for the folder
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
json_filename = f"{folder_name}_processed_{timestamp}.json"
json_path = os.path.join(JSON_SAVE_FOLDER, json_filename)
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(all_pdfs_json, f, indent=2, ensure_ascii=False)
return all_pdfs_json, json_path, "\n".join(all_errors) if all_errors else "No errors"
def process_folders(folder_paths, progress=gr.Progress()):
all_results = []
all_json_paths = []
all_errors = []
# Ensure we don't process more than 5 folders
folder_paths = folder_paths[:5]
for i, folder_path in enumerate(folder_paths):
progress(i/len(folder_paths), desc=f"Processing folder {i+1}/{len(folder_paths)}")
json_data, json_path, errors = process_folder(folder_path, progress)
if json_data:
all_results.append({
"folder": os.path.basename(folder_path),
"data": json_data
})
if json_path:
all_json_paths.append(json_path)
if errors and errors != "No errors":
all_errors.append(f"Folder {os.path.basename(folder_path)}: {errors}")
return all_results, all_json_paths, "\n".join(all_errors) if all_errors else "No errors"
def chunk_json_by_char_limit(data, char_limit=3500):
chunks = []
current_chunk = []
current_length = 0
for entry in data:
entry_str = json.dumps(entry, ensure_ascii=False)
entry_length = len(entry_str)
if current_length + entry_length > char_limit:
chunks.append(current_chunk)
current_chunk = [entry]
current_length = entry_length
else:
current_chunk.append(entry)
current_length += entry_length
if current_chunk:
chunks.append(current_chunk)
return chunks
def call_llm_api(api_key, json_file_paths, repeated_info, debug_mode):
all_csv_data = {}
all_debug_info = ""
api_status = True
for json_path in json_file_paths:
try:
with open(json_path, 'r', encoding='utf-8') as f:
full_data = json.load(f)
# Extract folder name from the JSON filename (format: foldername_processed_timestamp.json)
folder_name = os.path.basename(json_path).split('_processed_')[0]
json_chunks = chunk_json_by_char_limit(full_data, char_limit=3500)
all_csv_chunks = []
header_preserved = False
debug_info = f"Processing folder: {folder_name}\n"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
for idx, chunk in enumerate(json_chunks):
prompt = f"""
{repeated_info}
Below is a portion of the voter data in JSON format. Please extract all entries into a CSV format with the following columns:
विधानसभा, सेक्शन, मतदाता ID, मतदाता का नाम, अभिभावक का नाम, घर संख्या, आयु, लिंग, फोटो उपलब्ध?
Rules:
1. Use exactly these column headers in Hindi as shown above
2. Separate values with COMMAS (,)
3. For photo availability, use "हाँ" or "नहीं"
4. Do NOT include any extra explanation — only CSV
JSON Data:
{json.dumps(chunk, ensure_ascii=False)}
Respond with ONLY the CSV data (including header ONLY in the first chunk).
""".strip()
payload = {
"model": "google/gemma-3n-e4b-it:free",
"messages": [
{"role": "user", "content": prompt}
],
"temperature": 0.1,
"max_tokens": 2048
}
try:
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers=headers,
json=payload,
timeout=120
)
except Exception as e:
all_csv_data[folder_name] = pd.DataFrame({"Error": [f"Network error: {str(e)}"]})
debug_info += f"\nError in chunk {idx+1}: {str(e)}\n"
api_status = False
continue
if debug_mode:
debug_info += f"\n--- Chunk {idx+1} ---\nStatus: {response.status_code}\n{response.text}\n"
if response.status_code != 200:
all_csv_data[folder_name] = pd.DataFrame({"Error": [f"API Error on chunk {idx+1}: {response.text}"]})
debug_info += f"\nAPI Error in chunk {idx+1}: {response.text}\n"
api_status = False
continue
chunk_csv = response.json()["choices"][0]["message"]["content"].strip()
# Keep header for first chunk only
lines = chunk_csv.splitlines()
if not header_preserved:
all_csv_chunks.append(chunk_csv)
header_preserved = True
else:
if len(lines) > 1:
all_csv_chunks.append("\n".join(lines[1:]))
else:
all_csv_chunks.append("") # if empty or malformed
time.sleep(1.5)
# Combine CSV results for this folder
combined_csv = "\n".join(all_csv_chunks)
csv_filename = f"{folder_name}_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
csv_path = os.path.join(JSON_SAVE_FOLDER, csv_filename)
with open(csv_path, 'w', encoding='utf-8-sig', newline='') as f:
f.write(combined_csv)
# Attempt to parse CSV into DataFrame
try:
df = pd.read_csv(io.StringIO(combined_csv))
all_csv_data[folder_name] = df
except Exception as e:
all_csv_data[folder_name] = pd.DataFrame({"Error": [f"CSV Parsing Error: {str(e)}", combined_csv]})
api_status = False
if debug_mode:
all_debug_info += debug_info + "\n"
except Exception as e:
all_csv_data[folder_name] = pd.DataFrame({"Error": [str(e)]})
all_debug_info += f"\nError processing {folder_name}: {str(e)}\n"
api_status = False
# Prepare download files
download_files = []
for folder_name in all_csv_data:
csv_filename = f"{folder_name}_output.csv"
csv_path = os.path.join(JSON_SAVE_FOLDER, csv_filename)
all_csv_data[folder_name].to_csv(csv_path, index=False, encoding='utf-8-sig')
download_files.append(csv_path)
# If only one folder, return its DataFrame directly, otherwise return a dict of DataFrames
if len(all_csv_data) == 1:
df_output = list(all_csv_data.values())[0]
else:
df_output = pd.concat(all_csv_data.values(), keys=all_csv_data.keys())
return (
df_output,
download_files[0] if len(download_files) == 1 else download_files,
all_debug_info if debug_mode else "",
api_status
)
# Gradio interface
with gr.Blocks(title="Hindi PDF Folder Processor with LLM API") as demo:
gr.Markdown("## 📄 Hindi PDF Folder Processor with LLM API")
gr.Markdown("Process folders of PDFs to extract text and convert to structured CSV using LLM")
with gr.Tab("PDF Processing"):
with gr.Row():
with gr.Column():
folder_input = gr.File(
label="Upload Folder(s) (Select multiple)",
file_count="multiple",
file_types=[".pdf"]
)
pdf_submit = gr.Button("Process PDF Folders")
gr.Markdown("Note: Please select multiple folders (up to 5) containing PDFs")
with gr.Column():
json_display = gr.JSON(label="Extracted JSON Data")
pdf_errors = gr.Textbox(label="Processing Errors")
json_download = gr.File(label="Download JSON Files", visible=False)
with gr.Tab("LLM API Processing"):
with gr.Row():
with gr.Column():
api_key = gr.Textbox(label="OpenRouter API Key", type="password")
repeated_info = gr.Textbox(
label="Additional Instructions",
value="Extract voter information from the following text:"
)
debug_mode = gr.Checkbox(label="Enable Debug Mode")
api_submit = gr.Button("Call LLM API")
with gr.Column():
dataframe_output = gr.Dataframe(label="CSV Output", wrap=True)
csv_download = gr.File(label="Download CSV Files")
api_debug = gr.Textbox(label="Debug Information", visible=False)
api_status = gr.Textbox(label="API Status", visible=False)
def process_selected_folders(files):
# Filter out non-directory files and limit to 5 folders
folder_paths = []
for file_info in files:
file_path = file_info.name
if os.path.isdir(file_path):
folder_paths.append(file_path)
if len(folder_paths) >= 5:
break
if not folder_paths:
return None, None, "No valid folders selected or found in the upload"
return process_folders(folder_paths)
# PDF Processing
pdf_submit.click(
process_selected_folders,
inputs=[folder_input],
outputs=[json_display, json_download, pdf_errors]
)
# API Processing
api_submit.click(
call_llm_api,
inputs=[api_key, json_download, repeated_info, debug_mode],
outputs=[dataframe_output, csv_download, api_debug, api_status]
)
# Show/hide debug based on checkbox
debug_mode.change(
lambda x: gr.update(visible=x),
inputs=[debug_mode],
outputs=[api_debug]
)
# Update API status visibility
api_submit.click(
lambda: gr.update(visible=True),
inputs=None,
outputs=[api_status]
)
if __name__ == "__main__":
demo.launch(share=True) |