Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pickle
|
| 4 |
+
import time
|
| 5 |
+
from langchain import OpenAI
|
| 6 |
+
from langchain.chains import RetrievalQAWithSourcesChain
|
| 7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
| 9 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 10 |
+
from langchain.vectorstores import FAISS
|
| 11 |
+
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
load_dotenv() # take environment variables from .env (especially openai api key)
|
| 14 |
+
|
| 15 |
+
st.title("RockyBot: News Research Tool π")
|
| 16 |
+
st.sidebar.title("News Article URLs")
|
| 17 |
+
|
| 18 |
+
urls = []
|
| 19 |
+
for i in range(3):
|
| 20 |
+
url = st.sidebar.text_input(f"URL {i+1}")
|
| 21 |
+
urls.append(url)
|
| 22 |
+
|
| 23 |
+
process_url_clicked = st.sidebar.button("Process URLs")
|
| 24 |
+
file_path = "faiss_store_openai.pkl"
|
| 25 |
+
|
| 26 |
+
main_placeholder = st.empty()
|
| 27 |
+
llm = OpenAI(temperature=0.9, max_tokens=500)
|
| 28 |
+
|
| 29 |
+
if process_url_clicked:
|
| 30 |
+
# load data
|
| 31 |
+
loader = UnstructuredURLLoader(urls=urls)
|
| 32 |
+
main_placeholder.text("Data Loading...Started...β
β
β
")
|
| 33 |
+
data = loader.load()
|
| 34 |
+
# split data
|
| 35 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 36 |
+
separators=['\n\n', '\n', '.', ','],
|
| 37 |
+
chunk_size=1000
|
| 38 |
+
)
|
| 39 |
+
main_placeholder.text("Text Splitter...Started...β
β
β
")
|
| 40 |
+
docs = text_splitter.split_documents(data)
|
| 41 |
+
# create embeddings and save it to FAISS index
|
| 42 |
+
embeddings = OpenAIEmbeddings()
|
| 43 |
+
vectorstore_openai = FAISS.from_documents(docs, embeddings)
|
| 44 |
+
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
| 45 |
+
time.sleep(2)
|
| 46 |
+
|
| 47 |
+
# Save the FAISS index to a pickle file
|
| 48 |
+
with open(file_path, "wb") as f:
|
| 49 |
+
pickle.dump(vectorstore_openai, f)
|
| 50 |
+
|
| 51 |
+
query = main_placeholder.text_input("Question: ")
|
| 52 |
+
if query:
|
| 53 |
+
if os.path.exists(file_path):
|
| 54 |
+
with open(file_path, "rb") as f:
|
| 55 |
+
vectorstore = pickle.load(f)
|
| 56 |
+
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
| 57 |
+
result = chain({"question": query}, return_only_outputs=True)
|
| 58 |
+
# result will be a dictionary of this format --> {"answer": "", "sources": [] }
|
| 59 |
+
st.header("Answer")
|
| 60 |
+
st.write(result["answer"])
|
| 61 |
+
|
| 62 |
+
# Display sources, if available
|
| 63 |
+
sources = result.get("sources", "")
|
| 64 |
+
if sources:
|
| 65 |
+
st.subheader("Sources:")
|
| 66 |
+
sources_list = sources.split("\n") # Split the sources by newline
|
| 67 |
+
for source in sources_list:
|
| 68 |
+
st.write(source)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|