|
import os |
|
import json |
|
from io import BytesIO |
|
from PIL import Image |
|
import torch |
|
from fastapi import FastAPI, File, UploadFile, Form |
|
from fastapi.responses import JSONResponse |
|
from huggingface_hub import hf_hub_download |
|
from transformers import ( |
|
AutoProcessor, |
|
LayoutLMv3Model, |
|
T5ForConditionalGeneration, |
|
AutoTokenizer |
|
) |
|
|
|
app = FastAPI() |
|
|
|
|
|
HF_REPO = "shouvik27/LayoutLMv3_T5" |
|
CKPT_NAME = "pytorch_model.bin" |
|
|
|
ckpt_path = hf_hub_download(repo_id=HF_REPO, filename=CKPT_NAME) |
|
ckpt = torch.load(ckpt_path, map_location="cpu") |
|
|
|
|
|
processor = AutoProcessor.from_pretrained( |
|
"microsoft/layoutlmv3-base", apply_ocr=False |
|
) |
|
layout_model = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base") |
|
layout_model.load_state_dict(ckpt["layout_model"], strict=False) |
|
layout_model.eval().to("cpu") |
|
|
|
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small") |
|
t5_model.load_state_dict(ckpt["t5_model"], strict=False) |
|
t5_model.eval().to("cpu") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("t5-small") |
|
|
|
proj_state = ckpt["projection"] |
|
projection = torch.nn.Sequential( |
|
torch.nn.Linear(768, t5_model.config.d_model), |
|
torch.nn.LayerNorm(t5_model.config.d_model), |
|
torch.nn.GELU() |
|
) |
|
projection.load_state_dict(proj_state) |
|
projection.eval().to("cpu") |
|
|
|
if t5_model.config.decoder_start_token_id is None: |
|
t5_model.config.decoder_start_token_id = tokenizer.bos_token_id or tokenizer.pad_token_id |
|
if t5_model.config.bos_token_id is None: |
|
t5_model.config.bos_token_id = t5_model.config.decoder_start_token_id |
|
|
|
|
|
def infer_from_files(image_file: UploadFile, json_file: UploadFile): |
|
|
|
image_bytes = image_file.file.read() |
|
img_name = os.path.basename(image_file.filename) |
|
|
|
|
|
entry = None |
|
for line in json_file.file: |
|
if not line.strip(): |
|
continue |
|
obj = json.loads(line.decode('utf-8').strip()) |
|
if obj.get("img_name") == img_name: |
|
entry = obj |
|
break |
|
|
|
if entry is None: |
|
return {"error": f"No JSON entry for: {img_name}"} |
|
|
|
words = entry["src_word_list"] |
|
boxes = entry["src_wordbox_list"] |
|
|
|
img = Image.open(BytesIO(image_bytes)).convert("RGB") |
|
enc = processor([img], [words], boxes=[boxes], return_tensors="pt", padding=True, truncation=True) |
|
pixel_values = enc.pixel_values.to("cpu") |
|
input_ids = enc.input_ids.to("cpu") |
|
attention_mask = enc.attention_mask.to("cpu") |
|
bbox = enc.bbox.to("cpu") |
|
|
|
with torch.no_grad(): |
|
out = layout_model( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
bbox=bbox |
|
) |
|
seq_len = input_ids.size(1) |
|
text_feats = out.last_hidden_state[:, :seq_len, :] |
|
proj_feats = projection(text_feats) |
|
gen_ids = t5_model.generate( |
|
inputs_embeds=proj_feats, |
|
attention_mask=attention_mask, |
|
max_length=512, |
|
decoder_start_token_id=t5_model.config.decoder_start_token_id |
|
) |
|
|
|
result = tokenizer.decode(gen_ids[0], skip_special_tokens=True) |
|
return {"result": result} |
|
|
|
|
|
@app.post("/infer") |
|
async def infer_api( |
|
image_file: UploadFile = File(..., description="The image file"), |
|
json_file: UploadFile = File(..., description="The NDJSON file"), |
|
): |
|
output = infer_from_files(image_file, json_file) |
|
return JSONResponse(content=output) |
|
|
|
@app.get("/") |
|
def healthcheck(): |
|
return {"message": "OCR FastAPI server is running."} |