File size: 11,586 Bytes
bf65dee
 
 
 
71e3164
 
 
bf65dee
 
 
 
 
 
bfa43e3
 
 
 
 
 
 
 
bf65dee
bfa43e3
 
bf65dee
bfa43e3
bf65dee
 
 
 
bfa43e3
bf65dee
bfa43e3
 
bf65dee
 
 
 
 
 
 
bfa43e3
 
 
 
 
 
 
 
 
 
 
bf65dee
 
71e3164
 
 
 
 
 
 
 
bfa43e3
 
71e3164
bfa43e3
71e3164
 
 
bfa43e3
71e3164
bfa43e3
71e3164
 
bfa43e3
71e3164
bfa43e3
71e3164
 
e0b4a17
71e3164
e0b4a17
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa43e3
 
 
e0b4a17
 
 
 
 
 
 
 
 
 
 
 
bfa43e3
 
 
 
 
 
e0b4a17
bfa43e3
 
 
 
 
 
 
 
 
 
 
 
 
e0b4a17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa43e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e3164
bfa43e3
 
 
 
 
 
 
 
 
e0b4a17
bfa43e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b4a17
bfa43e3
71e3164
 
bf65dee
 
 
 
 
 
71e3164
bfa43e3
71e3164
 
bf65dee
 
71e3164
bfa43e3
71e3164
 
bfa43e3
71e3164
bf65dee
71e3164
 
 
bfa43e3
71e3164
 
bfa43e3
bf65dee
 
 
bfa43e3
 
 
 
bf65dee
e0b4a17
71e3164
 
 
 
bfa43e3
 
e0b4a17
bfa43e3
 
 
 
 
 
e0b4a17
bfa43e3
 
 
e0b4a17
bfa43e3
e0b4a17
bfa43e3
 
e0b4a17
 
 
bf65dee
e0b4a17
 
71e3164
e0b4a17
 
 
 
 
 
 
 
 
 
71e3164
bf65dee
 
 
 
 
 
 
 
 
 
bfa43e3
 
 
bf65dee
e0b4a17
71e3164
 
e0b4a17
71e3164
 
e0b4a17
bf65dee
 
 
 
bfa43e3
bf65dee
 
bfa43e3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import gradio as gr
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.express as px
import plotly.graph_objects as go
from collections import defaultdict

# Load model and tokenizer globally for efficiency
model_name = "tabularisai/multilingual-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Define sentiment weights for score calculation
SENTIMENT_WEIGHTS = {
    0: 0.0,  # Very Negative
    1: 0.25,  # Negative
    2: 0.5,  # Neutral
    3: 0.75,  # Positive
    4: 1.0  # Very Positive
}


def predict_sentiment_with_scores(texts):
    """
    Predict sentiment for a list of texts and return both class labels and sentiment scores
    """
    inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)

    probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)

    # Get predicted classes
    sentiment_map = {
        0: "Very Negative",
        1: "Negative",
        2: "Neutral",
        3: "Positive",
        4: "Very Positive"
    }
    predicted_classes = [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]

    # Calculate sentiment scores (0-100)
    sentiment_scores = []
    for prob in probabilities:
        # Weighted sum of probabilities
        score = sum(prob[i].item() * SENTIMENT_WEIGHTS[i] for i in range(len(prob)))
        # Scale to 0-100
        sentiment_scores.append(round(score * 100, 2))

    return predicted_classes, sentiment_scores


def process_single_sheet(df, product_name):
    """
    Process a single dataframe and return sentiment analysis results
    """
    if 'Reviews' not in df.columns:
        raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")

    reviews = df['Reviews'].fillna("")
    sentiments, scores = predict_sentiment_with_scores(reviews.tolist())

    df['Sentiment'] = sentiments
    df['Sentiment_Score'] = scores

    # Calculate sentiment distribution
    sentiment_counts = pd.Series(sentiments).value_counts()
    avg_sentiment_score = round(sum(scores) / len(scores), 2)

    return df, sentiment_counts, avg_sentiment_score


def create_comparison_charts(sentiment_results, avg_scores):
    """
    Create investment-focused comparison charts including the new sentiment score visualization
    """
    # Prepare data for plotting
    plot_data = []
    for product, sentiment_counts in sentiment_results.items():
        sentiment_dict = sentiment_counts.to_dict()
        total = sum(sentiment_dict.values())

        row = {
            'Product': product,
            'Total Reviews': total
        }
        # Calculate percentages for each sentiment
        for sentiment, count in sentiment_dict.items():
            row[sentiment] = (count / total) * 100
        plot_data.append(row)

    df = pd.DataFrame(plot_data)

    # Ensure all sentiment columns exist in the correct order
    sentiments = ['Very Positive', 'Positive', 'Neutral', 'Negative', 'Very Negative']
    for sentiment in sentiments:
        if sentiment not in df.columns:
            df[sentiment] = 0

    # Calculate weighted sentiment score (0 to 100)
    sentiment_weights = {
        'Very Negative': 0,
        'Negative': 25,
        'Neutral': 50,
        'Positive': 75,
        'Very Positive': 100
    }

    # Create stacked bar chart for sentiment distribution
    distribution_fig = go.Figure()
    sentiments = ['Very Positive', 'Positive', 'Neutral', 'Negative', 'Very Negative']
    colors = ['rgb(39, 174, 96)', 'rgb(46, 204, 113)',
              'rgb(241, 196, 15)', 'rgb(231, 76, 60)',
              'rgb(192, 57, 43)']

    for sentiment, color in zip(sentiments, colors):
        distribution_fig.add_trace(go.Bar(
            name=sentiment,
            x=df['Product'],
            y=df[sentiment],
            marker_color=color
        ))

    distribution_fig.update_layout(
        barmode='stack',
        title='Sentiment Distribution by Product',
        yaxis_title='Percentage (%)',
        showlegend=True
    )

    # Calculate Positive-Negative Ratios
    df['Positive Ratio'] = df[['Positive', 'Very Positive']].sum(axis=1)
    df['Negative Ratio'] = df[['Negative', 'Very Negative']].sum(axis=1)

    # Create Positive-Negative ratio chart
    ratio_fig = go.Figure()
    ratio_fig.add_trace(go.Bar(
        name='Positive',
        x=df['Product'],
        y=df['Positive Ratio'],
        marker_color='rgb(50, 205, 50)'
    ))
    ratio_fig.add_trace(go.Bar(
        name='Negative',
        x=df['Product'],
        y=df['Negative Ratio'],
        marker_color='rgb(220, 20, 60)'
    ))
    ratio_fig.update_layout(
        barmode='group',
        title='Positive vs Negative Sentiment Ratio by Product',
        yaxis_title='Percentage (%)'
    )

    # Create summary DataFrame
    summary_data = {
        'Product': df['Product'].tolist(),
        'Total Reviews': df['Total Reviews'].tolist(),
        'Positive Ratio (%)': df['Positive Ratio'].round(2).tolist(),
        'Negative Ratio (%)': df['Negative Ratio'].round(2).tolist(),
        'Neutral Ratio (%)': df['Neutral'].round(2).tolist(),
        'Weighted Sentiment Score': [avg_scores[prod] for prod in df['Product']]
    }
    summary_df = pd.DataFrame(summary_data)

    # Create sentiment score chart
    score_comparison_fig = go.Figure()
    score_comparison_fig.add_trace(go.Bar(
        x=summary_df['Product'],
        y=summary_df['Weighted Sentiment Score'],
        text=[f"{score:.1f}" for score in summary_df['Weighted Sentiment Score']],
        textposition='auto',
        marker_color='rgb(65, 105, 225)',
        name='Sentiment Score'
    ))
    score_comparison_fig.update_layout(
        title='Weighted Sentiment Scores by Product (0-100)',
        yaxis_title='Sentiment Score',
        yaxis_range=[0, 100],
        showlegend=False,
        bargap=0.3,
        plot_bgcolor='white'
    )

    return score_comparison_fig, distribution_fig, ratio_fig, summary_df

    products = list(avg_scores.keys())
    scores = list(avg_scores.values())

    # Add bars for sentiment scores
    score_comparison_fig.add_trace(go.Bar(
        x=products,
        y=scores,
        text=[f"{score:.1f}" for score in scores],
        textposition='auto',
        marker_color='rgb(65, 105, 225)',
        name='Sentiment Score'
    ))

    # Update layout with appropriate styling
    score_comparison_fig.update_layout(
        title='Weighted Sentiment Scores by Product (0-100)',
        yaxis_title='Sentiment Score',
        yaxis_range=[0, 100],
        showlegend=False,
        bargap=0.3,
        plot_bgcolor='white'
    )

    # Add score to summary DataFrame
    summary_df['Weighted Sentiment Score'] = [avg_scores[prod] for prod in summary_df['Product']]

    # Create sentiment distribution stacked bar chart
    distribution_fig = go.Figure()
    colors = ['rgb(39, 174, 96)', 'rgb(46, 204, 113)',
              'rgb(241, 196, 15)', 'rgb(231, 76, 60)',
              'rgb(192, 57, 43)']

    # Add traces for each sentiment in order
    for sentiment, color in zip(sentiments, colors):
        distribution_fig.add_trace(go.Bar(
            name=sentiment,
            x=df['Product'],
            y=df[sentiment],
            marker_color=color
        ))

    distribution_fig.update_layout(
        barmode='stack',
        title='Sentiment Distribution by Product',
        yaxis_title='Percentage (%)',
        showlegend=True
    )

    return score_comparison_fig, distribution_fig, summary_df, output_path


def process_file(file_obj):
    """
    Process the input file and add sentiment analysis results
    """
    try:
        file_path = file_obj.name
        sentiment_results = defaultdict(pd.Series)
        avg_sentiment_scores = {}
        all_processed_dfs = {}

        if file_path.endswith('.csv'):
            df = pd.read_csv(file_path)
            product_name = "Product"  # Default name for CSV
            processed_df, sentiment_counts, avg_score = process_single_sheet(df, product_name)
            all_processed_dfs[product_name] = processed_df
            sentiment_results[product_name] = sentiment_counts
            avg_sentiment_scores[product_name] = avg_score

        elif file_path.endswith(('.xlsx', '.xls')):
            excel_file = pd.ExcelFile(file_path)
            for sheet_name in excel_file.sheet_names:
                df = pd.read_excel(file_path, sheet_name=sheet_name)
                processed_df, sentiment_counts, avg_score = process_single_sheet(df, sheet_name)
                all_processed_dfs[sheet_name] = processed_df
                sentiment_results[sheet_name] = sentiment_counts
                avg_sentiment_scores[sheet_name] = avg_score
        else:
            raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")

        # Create visualizations with new sentiment score chart
        score_comparison_fig, distribution_fig, ratio_fig, summary_df = create_comparison_charts(
            sentiment_results, avg_sentiment_scores
        )

        # Save results
        output_path = "sentiment_analysis_results.xlsx"
        with pd.ExcelWriter(output_path) as writer:
            for sheet_name, df in all_processed_dfs.items():
                df.to_excel(writer, sheet_name=sheet_name, index=False)
            if isinstance(summary_df, pd.DataFrame):  # Safety check
                summary_df.to_excel(writer, sheet_name='Summary', index=False)

        # Save results
        output_path = "sentiment_analysis_results.xlsx"
        with pd.ExcelWriter(output_path) as writer:
            # Save individual sheet data
            for sheet_name, df in all_processed_dfs.items():
                df.to_excel(writer, sheet_name=sheet_name, index=False)

            # Save summary data
            if isinstance(summary_df, pd.DataFrame):  # Ensure it's a DataFrame before saving
                summary_df.to_excel(writer, sheet_name='Summary', index=False)

        return score_comparison_fig, distribution_fig, summary_df, output_path

    except Exception as e:
        raise gr.Error(str(e))


# Update the Gradio interface
with gr.Blocks() as interface:
    gr.Markdown("# Product Review Sentiment Analysis")

    gr.Markdown("""
    ### Quick Guide
    1. **Excel File (Multiple Products)**:
       - Create separate sheets for each product
       - Name sheets with product/company names
       - Include "Reviews" column in each sheet

    2. **CSV File (Single Product)**:
       - Include "Reviews" column

    Upload your file and click Analyze to get started.
    """)

    with gr.Row():
        file_input = gr.File(
            label="Upload File (CSV or Excel)",
            file_types=[".csv", ".xlsx", ".xls"]
        )

    with gr.Row():
        analyze_btn = gr.Button("Analyze Sentiments")

    with gr.Row():
        sentiment_score_plot = gr.Plot(label="Weighted Sentiment Scores")

    with gr.Row():
        distribution_plot = gr.Plot(label="Sentiment Distribution")

    with gr.Row():
        summary_table = gr.Dataframe(label="Summary Metrics")

    with gr.Row():
        output_file = gr.File(label="Download Full Report")

    analyze_btn.click(
        fn=process_file,
        inputs=[file_input],
        outputs=[sentiment_score_plot, distribution_plot, summary_table, output_file]
    )

# Launch interface
interface.launch()