File size: 11,586 Bytes
bf65dee 71e3164 bf65dee bfa43e3 bf65dee bfa43e3 bf65dee bfa43e3 bf65dee bfa43e3 bf65dee bfa43e3 bf65dee bfa43e3 bf65dee 71e3164 bfa43e3 71e3164 bfa43e3 71e3164 bfa43e3 71e3164 bfa43e3 71e3164 bfa43e3 71e3164 bfa43e3 71e3164 e0b4a17 71e3164 e0b4a17 bfa43e3 e0b4a17 bfa43e3 e0b4a17 bfa43e3 e0b4a17 bfa43e3 71e3164 bfa43e3 e0b4a17 bfa43e3 e0b4a17 bfa43e3 71e3164 bf65dee 71e3164 bfa43e3 71e3164 bf65dee 71e3164 bfa43e3 71e3164 bfa43e3 71e3164 bf65dee 71e3164 bfa43e3 71e3164 bfa43e3 bf65dee bfa43e3 bf65dee e0b4a17 71e3164 bfa43e3 e0b4a17 bfa43e3 e0b4a17 bfa43e3 e0b4a17 bfa43e3 e0b4a17 bfa43e3 e0b4a17 bf65dee e0b4a17 71e3164 e0b4a17 71e3164 bf65dee bfa43e3 bf65dee e0b4a17 71e3164 e0b4a17 71e3164 e0b4a17 bf65dee bfa43e3 bf65dee bfa43e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import gradio as gr
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.express as px
import plotly.graph_objects as go
from collections import defaultdict
# Load model and tokenizer globally for efficiency
model_name = "tabularisai/multilingual-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Define sentiment weights for score calculation
SENTIMENT_WEIGHTS = {
0: 0.0, # Very Negative
1: 0.25, # Negative
2: 0.5, # Neutral
3: 0.75, # Positive
4: 1.0 # Very Positive
}
def predict_sentiment_with_scores(texts):
"""
Predict sentiment for a list of texts and return both class labels and sentiment scores
"""
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get predicted classes
sentiment_map = {
0: "Very Negative",
1: "Negative",
2: "Neutral",
3: "Positive",
4: "Very Positive"
}
predicted_classes = [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
# Calculate sentiment scores (0-100)
sentiment_scores = []
for prob in probabilities:
# Weighted sum of probabilities
score = sum(prob[i].item() * SENTIMENT_WEIGHTS[i] for i in range(len(prob)))
# Scale to 0-100
sentiment_scores.append(round(score * 100, 2))
return predicted_classes, sentiment_scores
def process_single_sheet(df, product_name):
"""
Process a single dataframe and return sentiment analysis results
"""
if 'Reviews' not in df.columns:
raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")
reviews = df['Reviews'].fillna("")
sentiments, scores = predict_sentiment_with_scores(reviews.tolist())
df['Sentiment'] = sentiments
df['Sentiment_Score'] = scores
# Calculate sentiment distribution
sentiment_counts = pd.Series(sentiments).value_counts()
avg_sentiment_score = round(sum(scores) / len(scores), 2)
return df, sentiment_counts, avg_sentiment_score
def create_comparison_charts(sentiment_results, avg_scores):
"""
Create investment-focused comparison charts including the new sentiment score visualization
"""
# Prepare data for plotting
plot_data = []
for product, sentiment_counts in sentiment_results.items():
sentiment_dict = sentiment_counts.to_dict()
total = sum(sentiment_dict.values())
row = {
'Product': product,
'Total Reviews': total
}
# Calculate percentages for each sentiment
for sentiment, count in sentiment_dict.items():
row[sentiment] = (count / total) * 100
plot_data.append(row)
df = pd.DataFrame(plot_data)
# Ensure all sentiment columns exist in the correct order
sentiments = ['Very Positive', 'Positive', 'Neutral', 'Negative', 'Very Negative']
for sentiment in sentiments:
if sentiment not in df.columns:
df[sentiment] = 0
# Calculate weighted sentiment score (0 to 100)
sentiment_weights = {
'Very Negative': 0,
'Negative': 25,
'Neutral': 50,
'Positive': 75,
'Very Positive': 100
}
# Create stacked bar chart for sentiment distribution
distribution_fig = go.Figure()
sentiments = ['Very Positive', 'Positive', 'Neutral', 'Negative', 'Very Negative']
colors = ['rgb(39, 174, 96)', 'rgb(46, 204, 113)',
'rgb(241, 196, 15)', 'rgb(231, 76, 60)',
'rgb(192, 57, 43)']
for sentiment, color in zip(sentiments, colors):
distribution_fig.add_trace(go.Bar(
name=sentiment,
x=df['Product'],
y=df[sentiment],
marker_color=color
))
distribution_fig.update_layout(
barmode='stack',
title='Sentiment Distribution by Product',
yaxis_title='Percentage (%)',
showlegend=True
)
# Calculate Positive-Negative Ratios
df['Positive Ratio'] = df[['Positive', 'Very Positive']].sum(axis=1)
df['Negative Ratio'] = df[['Negative', 'Very Negative']].sum(axis=1)
# Create Positive-Negative ratio chart
ratio_fig = go.Figure()
ratio_fig.add_trace(go.Bar(
name='Positive',
x=df['Product'],
y=df['Positive Ratio'],
marker_color='rgb(50, 205, 50)'
))
ratio_fig.add_trace(go.Bar(
name='Negative',
x=df['Product'],
y=df['Negative Ratio'],
marker_color='rgb(220, 20, 60)'
))
ratio_fig.update_layout(
barmode='group',
title='Positive vs Negative Sentiment Ratio by Product',
yaxis_title='Percentage (%)'
)
# Create summary DataFrame
summary_data = {
'Product': df['Product'].tolist(),
'Total Reviews': df['Total Reviews'].tolist(),
'Positive Ratio (%)': df['Positive Ratio'].round(2).tolist(),
'Negative Ratio (%)': df['Negative Ratio'].round(2).tolist(),
'Neutral Ratio (%)': df['Neutral'].round(2).tolist(),
'Weighted Sentiment Score': [avg_scores[prod] for prod in df['Product']]
}
summary_df = pd.DataFrame(summary_data)
# Create sentiment score chart
score_comparison_fig = go.Figure()
score_comparison_fig.add_trace(go.Bar(
x=summary_df['Product'],
y=summary_df['Weighted Sentiment Score'],
text=[f"{score:.1f}" for score in summary_df['Weighted Sentiment Score']],
textposition='auto',
marker_color='rgb(65, 105, 225)',
name='Sentiment Score'
))
score_comparison_fig.update_layout(
title='Weighted Sentiment Scores by Product (0-100)',
yaxis_title='Sentiment Score',
yaxis_range=[0, 100],
showlegend=False,
bargap=0.3,
plot_bgcolor='white'
)
return score_comparison_fig, distribution_fig, ratio_fig, summary_df
products = list(avg_scores.keys())
scores = list(avg_scores.values())
# Add bars for sentiment scores
score_comparison_fig.add_trace(go.Bar(
x=products,
y=scores,
text=[f"{score:.1f}" for score in scores],
textposition='auto',
marker_color='rgb(65, 105, 225)',
name='Sentiment Score'
))
# Update layout with appropriate styling
score_comparison_fig.update_layout(
title='Weighted Sentiment Scores by Product (0-100)',
yaxis_title='Sentiment Score',
yaxis_range=[0, 100],
showlegend=False,
bargap=0.3,
plot_bgcolor='white'
)
# Add score to summary DataFrame
summary_df['Weighted Sentiment Score'] = [avg_scores[prod] for prod in summary_df['Product']]
# Create sentiment distribution stacked bar chart
distribution_fig = go.Figure()
colors = ['rgb(39, 174, 96)', 'rgb(46, 204, 113)',
'rgb(241, 196, 15)', 'rgb(231, 76, 60)',
'rgb(192, 57, 43)']
# Add traces for each sentiment in order
for sentiment, color in zip(sentiments, colors):
distribution_fig.add_trace(go.Bar(
name=sentiment,
x=df['Product'],
y=df[sentiment],
marker_color=color
))
distribution_fig.update_layout(
barmode='stack',
title='Sentiment Distribution by Product',
yaxis_title='Percentage (%)',
showlegend=True
)
return score_comparison_fig, distribution_fig, summary_df, output_path
def process_file(file_obj):
"""
Process the input file and add sentiment analysis results
"""
try:
file_path = file_obj.name
sentiment_results = defaultdict(pd.Series)
avg_sentiment_scores = {}
all_processed_dfs = {}
if file_path.endswith('.csv'):
df = pd.read_csv(file_path)
product_name = "Product" # Default name for CSV
processed_df, sentiment_counts, avg_score = process_single_sheet(df, product_name)
all_processed_dfs[product_name] = processed_df
sentiment_results[product_name] = sentiment_counts
avg_sentiment_scores[product_name] = avg_score
elif file_path.endswith(('.xlsx', '.xls')):
excel_file = pd.ExcelFile(file_path)
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(file_path, sheet_name=sheet_name)
processed_df, sentiment_counts, avg_score = process_single_sheet(df, sheet_name)
all_processed_dfs[sheet_name] = processed_df
sentiment_results[sheet_name] = sentiment_counts
avg_sentiment_scores[sheet_name] = avg_score
else:
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
# Create visualizations with new sentiment score chart
score_comparison_fig, distribution_fig, ratio_fig, summary_df = create_comparison_charts(
sentiment_results, avg_sentiment_scores
)
# Save results
output_path = "sentiment_analysis_results.xlsx"
with pd.ExcelWriter(output_path) as writer:
for sheet_name, df in all_processed_dfs.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
if isinstance(summary_df, pd.DataFrame): # Safety check
summary_df.to_excel(writer, sheet_name='Summary', index=False)
# Save results
output_path = "sentiment_analysis_results.xlsx"
with pd.ExcelWriter(output_path) as writer:
# Save individual sheet data
for sheet_name, df in all_processed_dfs.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
# Save summary data
if isinstance(summary_df, pd.DataFrame): # Ensure it's a DataFrame before saving
summary_df.to_excel(writer, sheet_name='Summary', index=False)
return score_comparison_fig, distribution_fig, summary_df, output_path
except Exception as e:
raise gr.Error(str(e))
# Update the Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# Product Review Sentiment Analysis")
gr.Markdown("""
### Quick Guide
1. **Excel File (Multiple Products)**:
- Create separate sheets for each product
- Name sheets with product/company names
- Include "Reviews" column in each sheet
2. **CSV File (Single Product)**:
- Include "Reviews" column
Upload your file and click Analyze to get started.
""")
with gr.Row():
file_input = gr.File(
label="Upload File (CSV or Excel)",
file_types=[".csv", ".xlsx", ".xls"]
)
with gr.Row():
analyze_btn = gr.Button("Analyze Sentiments")
with gr.Row():
sentiment_score_plot = gr.Plot(label="Weighted Sentiment Scores")
with gr.Row():
distribution_plot = gr.Plot(label="Sentiment Distribution")
with gr.Row():
summary_table = gr.Dataframe(label="Summary Metrics")
with gr.Row():
output_file = gr.File(label="Download Full Report")
analyze_btn.click(
fn=process_file,
inputs=[file_input],
outputs=[sentiment_score_plot, distribution_plot, summary_table, output_file]
)
# Launch interface
interface.launch() |