shresht8's picture
new new graphs and summaries
e0b4a17 verified
raw
history blame
10.2 kB
import gradio as gr
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import plotly.express as px
import plotly.graph_objects as go
from collections import defaultdict
# Load model and tokenizer globally for efficiency
model_name = "tabularisai/multilingual-sentiment-analysis"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
def predict_sentiment(texts):
"""
Predict sentiment for a list of texts
"""
inputs = tokenizer(texts, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
sentiment_map = {
0: "Very Negative",
1: "Negative",
2: "Neutral",
3: "Positive",
4: "Very Positive"
}
return [sentiment_map[p] for p in torch.argmax(probabilities, dim=-1).tolist()]
def process_single_sheet(df, product_name):
"""
Process a single dataframe and return sentiment analysis results
"""
if 'Reviews' not in df.columns:
raise ValueError(f"'Reviews' column not found in sheet/file for {product_name}")
reviews = df['Reviews'].fillna("")
sentiments = predict_sentiment(reviews.tolist())
df['Sentiment'] = sentiments
# Calculate sentiment distribution
sentiment_counts = pd.Series(sentiments).value_counts()
return df, sentiment_counts
def create_comparison_charts(sentiment_results):
"""
Create investment-focused comparison charts for different products
"""
# Prepare data for plotting
plot_data = []
for product, sentiment_counts in sentiment_results.items():
# Convert to dictionary and get sum
sentiment_dict = sentiment_counts.to_dict()
total = sum(sentiment_dict.values())
row = {
'Product': product,
'Total Reviews': total
}
# Calculate percentages for each sentiment
for sentiment, count in sentiment_dict.items():
row[sentiment] = (count / total) * 100
plot_data.append(row)
df = pd.DataFrame(plot_data)
# Ensure all sentiment columns exist (in case some products don't have all sentiments)
for sentiment in ['Very Negative', 'Negative', 'Neutral', 'Positive', 'Very Positive']:
if sentiment not in df.columns:
df[sentiment] = 0
# Calculate weighted sentiment score (0 to 100)
sentiment_weights = {
'Very Negative': 0,
'Negative': 25,
'Neutral': 50,
'Positive': 75,
'Very Positive': 100
}
df['Sentiment Score'] = 0
for product in df['Product']:
score = 0
for sentiment, weight in sentiment_weights.items():
if sentiment in df.columns:
score += (df.loc[df['Product'] == product, sentiment].iloc[0] * weight / 100)
df.loc[df['Product'] == product, 'Sentiment Score'] = round(score, 2)
# Create sentiment score chart
score_fig = go.Figure()
score_fig.add_trace(go.Bar(
x=df['Product'],
y=df['Sentiment Score'],
text=df['Sentiment Score'].round(1),
textposition='auto',
marker_color='rgb(65, 105, 225)'
))
score_fig.update_layout(
title='Overall Sentiment Score by Product (0-100)',
yaxis_title='Weighted Sentiment Score',
yaxis_range=[0, 100],
showlegend=False
)
# Calculate Positive-Negative Ratios
df['Positive Ratio'] = df[['Positive', 'Very Positive']].sum(axis=1)
df['Negative Ratio'] = df[['Negative', 'Very Negative']].sum(axis=1)
# Create Positive-Negative ratio chart
ratio_fig = go.Figure()
ratio_fig.add_trace(go.Bar(
name='Positive',
x=df['Product'],
y=df['Positive Ratio'],
marker_color='rgb(50, 205, 50)'
))
ratio_fig.add_trace(go.Bar(
name='Negative',
x=df['Product'],
y=df['Negative Ratio'],
marker_color='rgb(220, 20, 60)'
))
ratio_fig.update_layout(
barmode='group',
title='Positive vs Negative Sentiment Ratio by Product',
yaxis_title='Percentage (%)'
)
# Create summary table with investment-relevant metrics
summary_df = pd.DataFrame({
'Product': df['Product'],
'Total Reviews': df['Total Reviews'],
'Sentiment Score (0-100)': df['Sentiment Score'],
'Positive Ratio (%)': df['Positive Ratio'].round(2),
'Negative Ratio (%)': df['Negative Ratio'].round(2),
'Neutral Ratio (%)': df['Neutral'].round(2)
})
# Calculate Confidence Score (avoiding division by zero)
summary_df['Confidence Score'] = ((summary_df['Positive Ratio (%)'] + summary_df['Negative Ratio (%)']) /
summary_df['Neutral Ratio (%)'].replace(0, 0.001)).round(2)
# Sort by Sentiment Score for easy comparison
summary_df = summary_df.sort_values('Sentiment Score (0-100)', ascending=False)
return score_fig, ratio_fig, summary_df
def process_file(file_obj):
"""
Process the input file and add sentiment analysis results
"""
try:
file_path = file_obj.name
sentiment_results = defaultdict(pd.Series)
all_processed_dfs = {}
if file_path.endswith('.csv'):
df = pd.read_csv(file_path)
product_name = "Product" # Default name for CSV
processed_df, sentiment_counts = process_single_sheet(df, product_name)
all_processed_dfs[product_name] = processed_df
sentiment_results[product_name] = sentiment_counts
elif file_path.endswith(('.xlsx', '.xls')):
excel_file = pd.ExcelFile(file_path)
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(file_path, sheet_name=sheet_name)
processed_df, sentiment_counts = process_single_sheet(df, sheet_name)
all_processed_dfs[sheet_name] = processed_df
sentiment_results[sheet_name] = sentiment_counts
else:
raise ValueError("Unsupported file format. Please upload a CSV or Excel file.")
# Create visualizations
distribution_plot, summary_table = create_comparison_charts(sentiment_results)
# Save results
output_path = "sentiment_analysis_results.xlsx"
with pd.ExcelWriter(output_path) as writer:
for sheet_name, df in all_processed_dfs.items():
df.to_excel(writer, sheet_name=sheet_name, index=False)
summary_table.to_excel(writer, sheet_name='Summary', index=False)
return (
distribution_plot,
summary_table,
output_path
)
except Exception as e:
raise gr.Error(str(e))
# Create Gradio interface
# In the Gradio interface section
def create_comparison_charts(sentiment_results):
"""
Create simplified, investment-focused comparison charts
"""
# Prepare data
plot_data = []
for product, sentiment_counts in sentiment_results.items():
sentiment_dict = sentiment_counts.to_dict()
total = sum(sentiment_dict.values())
row = {
'Product': product,
'Total Reviews': total
}
for sentiment, count in sentiment_dict.items():
row[sentiment] = (count / total) * 100
plot_data.append(row)
df = pd.DataFrame(plot_data)
# Ensure all sentiment columns exist
for sentiment in ['Very Negative', 'Negative', 'Neutral', 'Positive', 'Very Positive']:
if sentiment not in df.columns:
df[sentiment] = 0
# 1. Simple Stacked Bar Chart showing sentiment distribution
stack_fig = go.Figure()
sentiments = ['Very Positive', 'Positive', 'Neutral', 'Negative', 'Very Negative']
colors = ['rgb(39, 174, 96)', 'rgb(46, 204, 113)',
'rgb(241, 196, 15)', 'rgb(231, 76, 60)',
'rgb(192, 57, 43)']
for sentiment, color in zip(sentiments, colors):
stack_fig.add_trace(go.Bar(
name=sentiment,
x=df['Product'],
y=df[sentiment],
marker_color=color
))
stack_fig.update_layout(
barmode='stack',
title='Sentiment Distribution by Product',
yaxis_title='Percentage (%)'
)
# 2. Aggregated Sentiment Ratios for Quick Comparison
df['Positive_Total'] = df[['Positive', 'Very Positive']].sum(axis=1)
df['Negative_Total'] = df[['Negative', 'Very Negative']].sum(axis=1)
summary_df = pd.DataFrame({
'Product': df['Product'],
'Total Reviews': df['Total Reviews'],
'Positive (%)': df['Positive_Total'].round(2),
'Neutral (%)': df['Neutral'].round(2),
'Negative (%)': df['Negative_Total'].round(2)
})
# Sort by Positive percentage for easy comparison
summary_df = summary_df.sort_values('Positive (%)', ascending=False)
return stack_fig, summary_df
# Update the Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# Product Review Sentiment Analysis")
gr.Markdown("""
### Quick Guide
1. **Excel File (Multiple Products)**:
- Create separate sheets for each product
- Name sheets with product/company names
- Include "Reviews" column in each sheet
2. **CSV File (Single Product)**:
- Include "Reviews" column
Upload your file and click Analyze to get started.
""")
with gr.Row():
file_input = gr.File(
label="Upload File (CSV or Excel)",
file_types=[".csv", ".xlsx", ".xls"]
)
with gr.Row():
analyze_btn = gr.Button("Analyze Sentiments")
with gr.Row():
distribution_plot = gr.Plot(label="Sentiment Distribution")
with gr.Row():
summary_table = gr.Dataframe(label="Summary Metrics")
with gr.Row():
output_file = gr.File(label="Download Full Report")
analyze_btn.click(
fn=process_file,
inputs=[file_input],
outputs=[distribution_plot, summary_table, output_file]
)
# launch interface
interface.launch()