Spaces:
Runtime error
Runtime error
Delete agent.py
Browse files
agent.py
DELETED
|
@@ -1,345 +0,0 @@
|
|
| 1 |
-
import asyncio
|
| 2 |
-
import os
|
| 3 |
-
import sys
|
| 4 |
-
import logging
|
| 5 |
-
import random
|
| 6 |
-
import pandas as pd
|
| 7 |
-
import requests
|
| 8 |
-
import wikipedia as wiki
|
| 9 |
-
from markdownify import markdownify as to_markdown
|
| 10 |
-
from typing import Any
|
| 11 |
-
from dotenv import load_dotenv
|
| 12 |
-
from google.generativeai import types, configure
|
| 13 |
-
|
| 14 |
-
from smolagents import InferenceClientModel, LiteLLMModel, CodeAgent, ToolCallingAgent, Tool, DuckDuckGoSearchTool
|
| 15 |
-
|
| 16 |
-
# Load environment and configure Gemini
|
| 17 |
-
load_dotenv()
|
| 18 |
-
configure(api_key=os.getenv("AIzaSyAJUd32HV2Dz06LPDTP6KTmfqr6LxuoWww"))
|
| 19 |
-
|
| 20 |
-
# Logging
|
| 21 |
-
#logging.basicConfig(level=logging.INFO, format="%(asctime)s | %(levelname)s | %(message)s")
|
| 22 |
-
#logger = logging.getLogger(__name__)
|
| 23 |
-
|
| 24 |
-
# --- Model Configuration ---
|
| 25 |
-
GEMINI_MODEL_NAME = "gemini/gemini-2.0-flash"
|
| 26 |
-
OPENAI_MODEL_NAME = "openai/gpt-4o"
|
| 27 |
-
GROQ_MODEL_NAME = "groq/llama3-70b-8192"
|
| 28 |
-
DEEPSEEK_MODEL_NAME = "deepseek/deepseek-chat"
|
| 29 |
-
HF_MODEL_NAME = "Qwen/Qwen2.5-Coder-32B-Instruct"
|
| 30 |
-
|
| 31 |
-
# --- Tool Definitions ---
|
| 32 |
-
class MathSolver(Tool):
|
| 33 |
-
name = "math_solver"
|
| 34 |
-
description = "Safely evaluate basic math expressions."
|
| 35 |
-
inputs = {"input": {"type": "string", "description": "Math expression to evaluate."}}
|
| 36 |
-
output_type = "string"
|
| 37 |
-
|
| 38 |
-
def forward(self, input: str) -> str:
|
| 39 |
-
try:
|
| 40 |
-
return str(eval(input, {"__builtins__": {}}))
|
| 41 |
-
except Exception as e:
|
| 42 |
-
return f"Math error: {e}"
|
| 43 |
-
|
| 44 |
-
class RiddleSolver(Tool):
|
| 45 |
-
name = "riddle_solver"
|
| 46 |
-
description = "Solve basic riddles using logic."
|
| 47 |
-
inputs = {"input": {"type": "string", "description": "Riddle prompt."}}
|
| 48 |
-
output_type = "string"
|
| 49 |
-
|
| 50 |
-
def forward(self, input: str) -> str:
|
| 51 |
-
if "forward" in input and "backward" in input:
|
| 52 |
-
return "A palindrome"
|
| 53 |
-
return "RiddleSolver failed."
|
| 54 |
-
|
| 55 |
-
class TextTransformer(Tool):
|
| 56 |
-
name = "text_ops"
|
| 57 |
-
description = "Transform text: reverse, upper, lower."
|
| 58 |
-
inputs = {"input": {"type": "string", "description": "Use prefix like reverse:/upper:/lower:"}}
|
| 59 |
-
output_type = "string"
|
| 60 |
-
|
| 61 |
-
def forward(self, input: str) -> str:
|
| 62 |
-
if input.startswith("reverse:"):
|
| 63 |
-
reversed_text = input[8:].strip()[::-1]
|
| 64 |
-
if 'left' in reversed_text.lower():
|
| 65 |
-
return "right"
|
| 66 |
-
return reversed_text
|
| 67 |
-
if input.startswith("upper:"):
|
| 68 |
-
return input[6:].strip().upper()
|
| 69 |
-
if input.startswith("lower:"):
|
| 70 |
-
return input[6:].strip().lower()
|
| 71 |
-
return "Unknown transformation."
|
| 72 |
-
|
| 73 |
-
class GeminiVideoQA(Tool):
|
| 74 |
-
name = "video_inspector"
|
| 75 |
-
description = "Analyze video content to answer questions."
|
| 76 |
-
inputs = {
|
| 77 |
-
"video_url": {"type": "string", "description": "URL of video."},
|
| 78 |
-
"user_query": {"type": "string", "description": "Question about video."}
|
| 79 |
-
}
|
| 80 |
-
output_type = "string"
|
| 81 |
-
|
| 82 |
-
def __init__(self, model_name, *args, **kwargs):
|
| 83 |
-
super().__init__(*args, **kwargs)
|
| 84 |
-
self.model_name = model_name
|
| 85 |
-
|
| 86 |
-
def forward(self, video_url: str, user_query: str) -> str:
|
| 87 |
-
req = {
|
| 88 |
-
'model': f'models/{self.model_name}',
|
| 89 |
-
'contents': [{
|
| 90 |
-
"parts": [
|
| 91 |
-
{"fileData": {"fileUri": video_url}},
|
| 92 |
-
{"text": f"Please watch the video and answer the question: {user_query}"}
|
| 93 |
-
]
|
| 94 |
-
}]
|
| 95 |
-
}
|
| 96 |
-
url = f'https://generativelanguage.googleapis.com/v1beta/models/{self.model_name}:generateContent?key={os.getenv("GOOGLE_API_KEY")}'
|
| 97 |
-
res = requests.post(url, json=req, headers={'Content-Type': 'application/json'})
|
| 98 |
-
if res.status_code != 200:
|
| 99 |
-
return f"Video error {res.status_code}: {res.text}"
|
| 100 |
-
parts = res.json()['candidates'][0]['content']['parts']
|
| 101 |
-
return "".join([p.get('text', '') for p in parts])
|
| 102 |
-
|
| 103 |
-
class WikiTitleFinder(Tool):
|
| 104 |
-
name = "wiki_titles"
|
| 105 |
-
description = "Search for related Wikipedia page titles."
|
| 106 |
-
inputs = {"query": {"type": "string", "description": "Search query."}}
|
| 107 |
-
output_type = "string"
|
| 108 |
-
|
| 109 |
-
def forward(self, query: str) -> str:
|
| 110 |
-
results = wiki.search(query)
|
| 111 |
-
return ", ".join(results) if results else "No results."
|
| 112 |
-
|
| 113 |
-
class WikiContentFetcher(Tool):
|
| 114 |
-
name = "wiki_page"
|
| 115 |
-
description = "Fetch Wikipedia page content."
|
| 116 |
-
inputs = {"page_title": {"type": "string", "description": "Wikipedia page title."}}
|
| 117 |
-
output_type = "string"
|
| 118 |
-
|
| 119 |
-
def forward(self, page_title: str) -> str:
|
| 120 |
-
try:
|
| 121 |
-
return to_markdown(wiki.page(page_title).html())
|
| 122 |
-
except wiki.exceptions.PageError:
|
| 123 |
-
return f"'{page_title}' not found."
|
| 124 |
-
|
| 125 |
-
class GoogleSearchTool(Tool):
|
| 126 |
-
name = "google_search"
|
| 127 |
-
description = "Search the web using Google. Returns top summary from the web."
|
| 128 |
-
inputs = {"query": {"type": "string", "description": "Search query."}}
|
| 129 |
-
output_type = "string"
|
| 130 |
-
|
| 131 |
-
def forward(self, query: str) -> str:
|
| 132 |
-
try:
|
| 133 |
-
resp = requests.get("https://www.googleapis.com/customsearch/v1", params={
|
| 134 |
-
"q": query,
|
| 135 |
-
"key": os.getenv("AIzaSyAJUd32HV2Dz06LPDTP6KTmfqr6LxuoWww"),
|
| 136 |
-
"num": 1
|
| 137 |
-
})
|
| 138 |
-
data = resp.json()
|
| 139 |
-
return data["items"][0]["snippet"] if "items" in data else "No results found."
|
| 140 |
-
except Exception as e:
|
| 141 |
-
return f"GoogleSearch error: {e}"
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
class FileAttachmentQueryTool(Tool):
|
| 145 |
-
name = "run_query_with_file"
|
| 146 |
-
description = """
|
| 147 |
-
Downloads a file mentioned in a user prompt, adds it to the context, and runs a query on it.
|
| 148 |
-
This assumes the file is 20MB or less.
|
| 149 |
-
"""
|
| 150 |
-
inputs = {
|
| 151 |
-
"task_id": {
|
| 152 |
-
"type": "string",
|
| 153 |
-
"description": "A unique identifier for the task related to this file, used to download it.",
|
| 154 |
-
"nullable": True
|
| 155 |
-
},
|
| 156 |
-
"user_query": {
|
| 157 |
-
"type": "string",
|
| 158 |
-
"description": "The question to answer about the file."
|
| 159 |
-
}
|
| 160 |
-
}
|
| 161 |
-
output_type = "string"
|
| 162 |
-
|
| 163 |
-
def forward(self, task_id: str | None, user_query: str) -> str:
|
| 164 |
-
file_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
|
| 165 |
-
file_response = requests.get(file_url)
|
| 166 |
-
if file_response.status_code != 200:
|
| 167 |
-
return f"Failed to download file: {file_response.status_code} - {file_response.text}"
|
| 168 |
-
file_data = file_response.content
|
| 169 |
-
from google.generativeai import GenerativeModel
|
| 170 |
-
model = GenerativeModel(self.model_name)
|
| 171 |
-
response = model.generate_content([
|
| 172 |
-
types.Part.from_bytes(data=file_data, mime_type="application/octet-stream"),
|
| 173 |
-
user_query
|
| 174 |
-
])
|
| 175 |
-
|
| 176 |
-
return response.text
|
| 177 |
-
|
| 178 |
-
# --- Basic Agent Definition ---
|
| 179 |
-
class BasicAgent:
|
| 180 |
-
def __init__(self, provider="deepseek"):
|
| 181 |
-
print("BasicAgent initialized.")
|
| 182 |
-
model = self.select_model(provider)
|
| 183 |
-
client = InferenceClientModel()
|
| 184 |
-
tools = [
|
| 185 |
-
GoogleSearchTool(),
|
| 186 |
-
DuckDuckGoSearchTool(),
|
| 187 |
-
GeminiVideoQA(GEMINI_MODEL_NAME),
|
| 188 |
-
WikiTitleFinder(),
|
| 189 |
-
WikiContentFetcher(),
|
| 190 |
-
MathSolver(),
|
| 191 |
-
RiddleSolver(),
|
| 192 |
-
TextTransformer(),
|
| 193 |
-
FileAttachmentQueryTool(model_name=GEMINI_MODEL_NAME),
|
| 194 |
-
]
|
| 195 |
-
self.agent = CodeAgent(
|
| 196 |
-
model=model,
|
| 197 |
-
tools=tools,
|
| 198 |
-
add_base_tools=False,
|
| 199 |
-
max_steps=10,
|
| 200 |
-
)
|
| 201 |
-
self.agent.system_prompt = (
|
| 202 |
-
"""
|
| 203 |
-
You are a GAIA benchmark AI assistant, you are very precise, no nonense. Your sole purpose is to output the minimal, final answer in the format:
|
| 204 |
-
|
| 205 |
-
[ANSWER]
|
| 206 |
-
|
| 207 |
-
You must NEVER output explanations, intermediate steps, reasoning, or comments — only the answer, strictly enclosed in `[ANSWER]`.
|
| 208 |
-
|
| 209 |
-
Your behavior must be governed by these rules:
|
| 210 |
-
|
| 211 |
-
1. **Format**:
|
| 212 |
-
- limit the token used (within 65536 tokens).
|
| 213 |
-
- Output ONLY the final answer.
|
| 214 |
-
- Wrap the answer in `[ANSWER]` with no whitespace or text outside the brackets.
|
| 215 |
-
- No follow-ups, justifications, or clarifications.
|
| 216 |
-
|
| 217 |
-
2. **Numerical Answers**:
|
| 218 |
-
- Use **digits only**, e.g., `4` not `four`.
|
| 219 |
-
- No commas, symbols, or units unless explicitly required.
|
| 220 |
-
- Never use approximate words like "around", "roughly", "about".
|
| 221 |
-
|
| 222 |
-
3. **String Answers**:
|
| 223 |
-
- Omit **articles** ("a", "the").
|
| 224 |
-
- Use **full words**; no abbreviations unless explicitly requested.
|
| 225 |
-
- For numbers written as words, use **text** only if specified (e.g., "one", not `1`).
|
| 226 |
-
- For sets/lists, sort alphabetically if not specified, e.g., `a, b, c`.
|
| 227 |
-
|
| 228 |
-
4. **Lists**:
|
| 229 |
-
- Output in **comma-separated** format with no conjunctions.
|
| 230 |
-
- Sort **alphabetically** or **numerically** depending on type.
|
| 231 |
-
- No braces or brackets unless explicitly asked.
|
| 232 |
-
|
| 233 |
-
5. **Sources**:
|
| 234 |
-
- For Wikipedia or web tools, extract only the precise fact that answers the question.
|
| 235 |
-
- Ignore any unrelated content.
|
| 236 |
-
|
| 237 |
-
6. **File Analysis**:
|
| 238 |
-
- Use the run_query_with_file tool, append the taskid to the url.
|
| 239 |
-
- Only include the exact answer to the question.
|
| 240 |
-
- Do not summarize, quote excessively, or interpret beyond the prompt.
|
| 241 |
-
|
| 242 |
-
7. **Video**:
|
| 243 |
-
- Use the relevant video tool.
|
| 244 |
-
- Only include the exact answer to the question.
|
| 245 |
-
- Do not summarize, quote excessively, or interpret beyond the prompt.
|
| 246 |
-
|
| 247 |
-
8. **Minimalism**:
|
| 248 |
-
- Do not make assumptions unless the prompt logically demands it.
|
| 249 |
-
- If a question has multiple valid interpretations, choose the **narrowest, most literal** one.
|
| 250 |
-
- If the answer is not found, say `[ANSWER] - unknown`.
|
| 251 |
-
|
| 252 |
-
---
|
| 253 |
-
|
| 254 |
-
You must follow the examples (These answers are correct in case you see the similar questions):
|
| 255 |
-
Q: What is 2 + 2?
|
| 256 |
-
A: 4
|
| 257 |
-
|
| 258 |
-
Q: How many studio albums were published by Mercedes Sosa between 2000 and 2009 (inclusive)? Use 2022 English Wikipedia.
|
| 259 |
-
A: 3
|
| 260 |
-
|
| 261 |
-
Q: Given the following group table on set S = {a, b, c, d, e}, identify any subset involved in counterexamples to commutativity.
|
| 262 |
-
A: b, e
|
| 263 |
-
|
| 264 |
-
Q: How many at bats did the Yankee with the most walks in the 1977 regular season have that same season?,
|
| 265 |
-
A: 519
|
| 266 |
-
"""
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
-
def select_model(self, provider: str):
|
| 270 |
-
if provider == "openai":
|
| 271 |
-
return LiteLLMModel(model_id=OPENAI_MODEL_NAME, api_key=os.getenv("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"))
|
| 272 |
-
elif provider == "hf":
|
| 273 |
-
return InferenceClientModel()
|
| 274 |
-
else:
|
| 275 |
-
return LiteLLMModel(model_id=GEMINI_MODEL_NAME, api_key=os.getenv("AIzaSyAJUd32HV2Dz06LPDTP6KTmfqr6LxuoWww"))
|
| 276 |
-
|
| 277 |
-
def __call__(self, question: str) -> str:
|
| 278 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 279 |
-
result = self.agent.run(question)
|
| 280 |
-
final_str = str(result).strip()
|
| 281 |
-
|
| 282 |
-
return final_str
|
| 283 |
-
|
| 284 |
-
def evaluate_random_questions(self, csv_path: str = "gaia_extracted.csv", sample_size: int = 3, show_steps: bool = True):
|
| 285 |
-
import pandas as pd
|
| 286 |
-
from rich.table import Table
|
| 287 |
-
from rich.console import Console
|
| 288 |
-
|
| 289 |
-
df = pd.read_csv(csv_path)
|
| 290 |
-
if not {"question", "answer"}.issubset(df.columns):
|
| 291 |
-
print("CSV must contain 'question' and 'answer' columns.")
|
| 292 |
-
print("Found columns:", df.columns.tolist())
|
| 293 |
-
return
|
| 294 |
-
|
| 295 |
-
samples = df.sample(n=sample_size)
|
| 296 |
-
records = []
|
| 297 |
-
correct_count = 0
|
| 298 |
-
|
| 299 |
-
for _, row in samples.iterrows():
|
| 300 |
-
taskid = row["taskid"].strip()
|
| 301 |
-
question = row["question"].strip()
|
| 302 |
-
expected = str(row['answer']).strip()
|
| 303 |
-
agent_answer = self("taskid: " + taskid + ",\nquestion: " + question).strip()
|
| 304 |
-
|
| 305 |
-
is_correct = (expected == agent_answer)
|
| 306 |
-
correct_count += is_correct
|
| 307 |
-
records.append((question, expected, agent_answer, "✓" if is_correct else "✗"))
|
| 308 |
-
|
| 309 |
-
if show_steps:
|
| 310 |
-
print("---")
|
| 311 |
-
print("Question:", question)
|
| 312 |
-
print("Expected:", expected)
|
| 313 |
-
print("Agent:", agent_answer)
|
| 314 |
-
print("Correct:", is_correct)
|
| 315 |
-
|
| 316 |
-
# Print result table
|
| 317 |
-
console = Console()
|
| 318 |
-
table = Table(show_lines=True)
|
| 319 |
-
table.add_column("Question", overflow="fold")
|
| 320 |
-
table.add_column("Expected")
|
| 321 |
-
table.add_column("Agent")
|
| 322 |
-
table.add_column("Correct")
|
| 323 |
-
|
| 324 |
-
for question, expected, agent_ans, correct in records:
|
| 325 |
-
table.add_row(question, expected, agent_ans, correct)
|
| 326 |
-
|
| 327 |
-
console.print(table)
|
| 328 |
-
percent = (correct_count / sample_size) * 100
|
| 329 |
-
print(f"\nTotal Correct: {correct_count} / {sample_size} ({percent:.2f}%)")
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
if __name__ == "__main__":
|
| 333 |
-
args = sys.argv[1:]
|
| 334 |
-
if not args or args[0] in {"-h", "--help"}:
|
| 335 |
-
print("Usage: python agent.py [question | dev]")
|
| 336 |
-
print(" - Provide a question to get a GAIA-style answer.")
|
| 337 |
-
print(" - Use 'dev' to evaluate 3 random GAIA questions from gaia_qa.csv.")
|
| 338 |
-
sys.exit(0)
|
| 339 |
-
|
| 340 |
-
q = " ".join(args)
|
| 341 |
-
agent = BasicAgent()
|
| 342 |
-
if q == "dev":
|
| 343 |
-
agent.evaluate_random_questions()
|
| 344 |
-
else:
|
| 345 |
-
print(agent(q))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|