Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,28 +8,28 @@ import pandas as pd
|
|
| 8 |
# Loading spaCy model outside the streamlit cache
|
| 9 |
nlp = spacy.load("en_core_web_sm")
|
| 10 |
|
| 11 |
-
@st.
|
| 12 |
def load_environmental_model():
|
| 13 |
name_env = "ESGBERT/EnvironmentalBERT-environmental"
|
| 14 |
tokenizer_env = AutoTokenizer.from_pretrained(name_env)
|
| 15 |
model_env = AutoModelForSequenceClassification.from_pretrained(name_env)
|
| 16 |
return pipeline("text-classification", model=model_env, tokenizer=tokenizer_env)
|
| 17 |
|
| 18 |
-
@st.
|
| 19 |
def load_social_model():
|
| 20 |
name_soc = "ESGBERT/SocialBERT-social"
|
| 21 |
tokenizer_soc = AutoTokenizer.from_pretrained(name_soc)
|
| 22 |
model_soc = AutoModelForSequenceClassification.from_pretrained(name_soc)
|
| 23 |
return pipeline("text-classification", model=model_soc, tokenizer=tokenizer_soc)
|
| 24 |
|
| 25 |
-
@st.
|
| 26 |
def load_governance_model():
|
| 27 |
name_gov = "ESGBERT/GovernanceBERT-governance"
|
| 28 |
tokenizer_gov = AutoTokenizer.from_pretrained(name_gov)
|
| 29 |
model_gov = AutoModelForSequenceClassification.from_pretrained(name_gov)
|
| 30 |
return pipeline("text-classification", model=model_gov, tokenizer=tokenizer_gov)
|
| 31 |
|
| 32 |
-
@st.
|
| 33 |
def load_sentiment_model():
|
| 34 |
model_name = "climatebert/distilroberta-base-climate-sentiment"
|
| 35 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
@@ -37,12 +37,14 @@ def load_sentiment_model():
|
|
| 37 |
return pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 38 |
|
| 39 |
# Streamlit App
|
| 40 |
-
st.title("
|
| 41 |
|
| 42 |
# Get report URL from user input
|
| 43 |
url = st.text_input("Enter the URL of the report (PDF):")
|
| 44 |
|
| 45 |
# Model selection dropdown
|
|
|
|
|
|
|
| 46 |
selected_model = st.selectbox("Select Model", ["Environmental Model", "Social Model", "Governance Model", "Sentiment Model"])
|
| 47 |
|
| 48 |
if url:
|
|
@@ -52,18 +54,15 @@ if url:
|
|
| 52 |
if response.status_code == 200:
|
| 53 |
# Parse PDF and extract text
|
| 54 |
raw_text = parser.from_buffer(response.content)['content']
|
| 55 |
-
|
| 56 |
# Extract sentences using spaCy
|
| 57 |
doc = nlp(raw_text)
|
| 58 |
sentences = [sent.text for sent in doc.sents]
|
| 59 |
-
|
| 60 |
# Filtering and preprocessing sentences
|
| 61 |
sequences = list(map(str, sentences))
|
| 62 |
sentences = [x.replace("\n", "") for x in sequences]
|
| 63 |
sentences = [x for x in sentences if x != ""]
|
| 64 |
sentences = [x for x in sentences if x[0].isupper()]
|
| 65 |
-
sub_sentences = sentences[:100]
|
| 66 |
-
|
| 67 |
# Classification using different models based on user selection
|
| 68 |
if selected_model == "Environmental Model":
|
| 69 |
pipe_model = load_environmental_model()
|
|
|
|
| 8 |
# Loading spaCy model outside the streamlit cache
|
| 9 |
nlp = spacy.load("en_core_web_sm")
|
| 10 |
|
| 11 |
+
@st.cache_resource()
|
| 12 |
def load_environmental_model():
|
| 13 |
name_env = "ESGBERT/EnvironmentalBERT-environmental"
|
| 14 |
tokenizer_env = AutoTokenizer.from_pretrained(name_env)
|
| 15 |
model_env = AutoModelForSequenceClassification.from_pretrained(name_env)
|
| 16 |
return pipeline("text-classification", model=model_env, tokenizer=tokenizer_env)
|
| 17 |
|
| 18 |
+
@st.cache_resource()
|
| 19 |
def load_social_model():
|
| 20 |
name_soc = "ESGBERT/SocialBERT-social"
|
| 21 |
tokenizer_soc = AutoTokenizer.from_pretrained(name_soc)
|
| 22 |
model_soc = AutoModelForSequenceClassification.from_pretrained(name_soc)
|
| 23 |
return pipeline("text-classification", model=model_soc, tokenizer=tokenizer_soc)
|
| 24 |
|
| 25 |
+
@st.cache_resource()
|
| 26 |
def load_governance_model():
|
| 27 |
name_gov = "ESGBERT/GovernanceBERT-governance"
|
| 28 |
tokenizer_gov = AutoTokenizer.from_pretrained(name_gov)
|
| 29 |
model_gov = AutoModelForSequenceClassification.from_pretrained(name_gov)
|
| 30 |
return pipeline("text-classification", model=model_gov, tokenizer=tokenizer_gov)
|
| 31 |
|
| 32 |
+
@st.cache_resource()
|
| 33 |
def load_sentiment_model():
|
| 34 |
model_name = "climatebert/distilroberta-base-climate-sentiment"
|
| 35 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
|
| 37 |
return pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 38 |
|
| 39 |
# Streamlit App
|
| 40 |
+
st.title("ESG Report Classification using Natural Language Processing")
|
| 41 |
|
| 42 |
# Get report URL from user input
|
| 43 |
url = st.text_input("Enter the URL of the report (PDF):")
|
| 44 |
|
| 45 |
# Model selection dropdown
|
| 46 |
+
st.write("Environmental Model, Social Model, Governance Model would give the percentage denoting the parameter chosen.")
|
| 47 |
+
st.write("Sentiment Model shows if the company is a risk or opportunity based on all 3 parameters.")
|
| 48 |
selected_model = st.selectbox("Select Model", ["Environmental Model", "Social Model", "Governance Model", "Sentiment Model"])
|
| 49 |
|
| 50 |
if url:
|
|
|
|
| 54 |
if response.status_code == 200:
|
| 55 |
# Parse PDF and extract text
|
| 56 |
raw_text = parser.from_buffer(response.content)['content']
|
|
|
|
| 57 |
# Extract sentences using spaCy
|
| 58 |
doc = nlp(raw_text)
|
| 59 |
sentences = [sent.text for sent in doc.sents]
|
|
|
|
| 60 |
# Filtering and preprocessing sentences
|
| 61 |
sequences = list(map(str, sentences))
|
| 62 |
sentences = [x.replace("\n", "") for x in sequences]
|
| 63 |
sentences = [x for x in sentences if x != ""]
|
| 64 |
sentences = [x for x in sentences if x[0].isupper()]
|
| 65 |
+
sub_sentences = sentences[:100]
|
|
|
|
| 66 |
# Classification using different models based on user selection
|
| 67 |
if selected_model == "Environmental Model":
|
| 68 |
pipe_model = load_environmental_model()
|