shubham5524 commited on
Commit
fc36669
·
verified ·
1 Parent(s): 97c9aad

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -120
app.py DELETED
@@ -1,120 +0,0 @@
1
- from fastapi import FastAPI, Query
2
- from fastapi.responses import JSONResponse
3
- import torch
4
- import torchvision
5
- import numpy as np
6
- import requests
7
- import skimage.io
8
- import cv2
9
- import tempfile
10
- import os
11
- from PIL import Image
12
- from transformers import AutoImageProcessor, AutoModel
13
- import joblib
14
- from pytorch_grad_cam import GradCAM
15
- from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
16
- import torchxrayvision as xrv
17
- import requests
18
- from io import BytesIO
19
-
20
- import logging
21
- logging.getLogger("uvicorn").setLevel(logging.WARNING)
22
-
23
-
24
- app = FastAPI()
25
-
26
- cxr_model = xrv.models.DenseNet(weights="densenet121-res224-all")
27
- cxr_model.eval()
28
-
29
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
- tb_processor = AutoImageProcessor.from_pretrained("StanfordAIMI/dinov2-base-xray-224")
31
- tb_model = AutoModel.from_pretrained("StanfordAIMI/dinov2-base-xray-224").to(device)
32
- logreg = joblib.load("logreg_model.joblib")
33
-
34
- def preprocess_image(image_path):
35
- img = skimage.io.imread(image_path)
36
- img = xrv.datasets.normalize(img, 255)
37
-
38
- if img.ndim == 3:
39
- img = img.mean(2)[None, ...]
40
- elif img.ndim == 2:
41
- img = img[None, ...]
42
-
43
- transform = torchvision.transforms.Compose([
44
- xrv.datasets.XRayCenterCrop(),
45
- xrv.datasets.XRayResizer(224)
46
- ])
47
- img = transform(img)
48
- return torch.from_numpy(img)
49
-
50
- def get_predictions(img_tensor, model):
51
- with torch.no_grad():
52
- outputs = model(img_tensor[None, ...])
53
- preds = dict(zip(model.pathologies, outputs[0].detach().numpy()))
54
- return preds, outputs
55
-
56
- def get_top_preds(preds, tolerance=0.01, topk=5):
57
- sorted_preds = sorted(preds.items(), key=lambda x: -x[1])
58
- top_conf = sorted_preds[0][1]
59
- similar_preds = [(i, p, conf) for i, (p, conf) in enumerate(sorted_preds)
60
- if abs(conf - top_conf) <= tolerance][:topk]
61
- return sorted_preds, similar_preds
62
-
63
- def get_bounding_boxes(img_tensor, model, similar_preds):
64
- boxes = {}
65
- target_layer = model.features[-1]
66
- for idx, pathology, conf in similar_preds:
67
- cam = GradCAM(model=model, target_layers=[target_layer])
68
- pred_index = list(model.pathologies).index(pathology)
69
- grayscale_cam = cam(input_tensor=img_tensor[None, ...],
70
- targets=[ClassifierOutputTarget(pred_index)])[0]
71
- cam_resized = cv2.resize(grayscale_cam, (224, 224))
72
- cam_uint8 = (cam_resized * 255).astype(np.uint8)
73
- _, thresh = cv2.threshold(cam_uint8, 100, 255, cv2.THRESH_BINARY)
74
- contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
75
- if contours:
76
- x, y, w, h = cv2.boundingRect(contours[0])
77
- boxes[pathology] = [[x, y], [x + w, y + h]]
78
- return boxes
79
-
80
- def predict_tb(image_path):
81
- image = Image.open(image_path)
82
- inputs = tb_processor(images=image, return_tensors="pt").to(device)
83
- with torch.no_grad():
84
- outputs = tb_model(**inputs)
85
- embeddings = outputs.pooler_output.cpu().numpy()
86
- prediction = logreg.predict(embeddings)
87
- return int(prediction[0] == "tb")
88
-
89
- @app.get("/predict")
90
- async def predict_cxr(image_url: str = Query(..., description="URL to a chest X-ray image")):
91
- try:
92
- response = requests.get(image_url)
93
- if response.status_code != 200:
94
- return JSONResponse(content={"error": "Failed to download image"}, status_code=400)
95
-
96
- with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
97
- tmp.write(response.content)
98
- tmp_path = tmp.name
99
-
100
- img_tensor = preprocess_image(tmp_path)
101
-
102
- preds, _ = get_predictions(img_tensor, cxr_model)
103
- sorted_preds, similar_preds = get_top_preds(preds)
104
-
105
- prediction_result = {k: float(f"{v:.2f}") for k, v in preds.items()}
106
-
107
- bounding_boxes = get_bounding_boxes(img_tensor, cxr_model, similar_preds)
108
-
109
- tb_result = predict_tb(tmp_path)
110
-
111
- os.remove(tmp_path)
112
-
113
- return JSONResponse(content={
114
- "prediction_result": prediction_result,
115
- "bounding_box": bounding_boxes, # top-left , bottom-right coordinates
116
- "tb_finding": tb_result
117
- })
118
-
119
- except Exception as e:
120
- return JSONResponse(content={"error": str(e)}, status_code=500)