File size: 9,752 Bytes
4f5118b
 
 
4667d53
4f5118b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516d07
4f5118b
2516d07
4667d53
4f5118b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516d07
4f5118b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d28740
 
 
 
 
 
4667d53
2516d07
 
2f9b0fd
2516d07
 
 
 
4f5118b
 
4d28740
4f5118b
 
 
 
 
 
 
4d28740
4f5118b
 
 
 
2516d07
 
4f5118b
 
4667d53
4f5118b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from diffusers import StableDiffusionXLInpaintPipeline
import gradio as gr
import numpy as np
import time
import math
import random
import imageio
from PIL import Image
from PIL import ImageFilter
import torch
import modin.pandas as pd

max_64_bit_int = 2**63 - 1

device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", safety_checker = None)
pipe = pipe.to(device)

def noise_color(color, noise):
    return color + random.randint(- noise, noise)

def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left, prompt, negative_prompt, denoising_steps, num_inference_steps, guidance_scale, randomize_seed, seed, debug_mode, progress=gr.Progress()):
    start = time.time()
    progress(0, desc = "Preparing data...")

    if source_img is None:
        raise gr.Error("Please provide an image.")

    if prompt is None or prompt == "":
        raise gr.Error("Please provide a prompt input.")

    if negative_prompt is None or negative_prompt == "":
        raise gr.Error("Please provide a negative prompt input.")

    if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0:
        raise gr.Error("Please only provide positive margins.")

    if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0:
        raise gr.Error("At least one border must be enlarged.")

    if randomize_seed:
        seed = random.randint(0, max_64_bit_int)

    random.seed(seed)
    #pipe = pipe.manual_seed(seed)

    imageio.imwrite("data.png", source_img)

    # Input image
    input_image = Image.open("data.png").convert("RGB")
    original_height, original_width, original_channel = np.array(input_image).shape
    output_width = enlarge_left + original_width + enlarge_right
    output_height = enlarge_top + original_height + enlarge_bottom

    # Enlarged image
    enlarged_image = Image.new(mode = input_image.mode, size = (original_height, original_width), color = "black")
    enlarged_image.paste(input_image, (0, 0))
    enlarged_image = enlarged_image.resize((output_width, output_height))
    enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(25))

    enlarged_image.paste(input_image, (enlarge_left, enlarge_top))

    horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
    enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
    enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))

    vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
    enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
    enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))

    returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
    enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
    enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
    enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
    enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))

    enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(25))

    # Noise image
    noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
    enlarged_pixels = enlarged_image.load()

    for i in range(output_width):
        for j in range(output_height):
            enlarged_pixel = enlarged_pixels[i, j]
            noise = min(abs(enlarge_left - i), abs(enlarge_left + original_width - i), abs(enlarge_top - j), abs(enlarge_top + original_height - j), 255)
            noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))

    enlarged_image.paste(noise_image, (0, 0))
    enlarged_image.paste(input_image, (enlarge_left, enlarge_top))

    # Mask
    mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
    black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (0, 0, 0, 0))
    mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10))
    mask_image = mask_image.filter(ImageFilter.BoxBlur(10))

    limitation = "";

    # Limited to 1 million pixels
    if 1024 * 1024 < output_width * output_height:
        factor = ((1024 * 1024) / (output_width * output_height))**0.5
        output_width = math.floor(output_width * factor)
        output_height = math.floor(output_height * factor)

        limitation = " Due to technical limitation, the image have been downscaled.";

    # Width and height must be multiple of 8
    output_width = output_width - (output_width % 8)
    output_height = output_height - (output_height % 8)
    progress(None, desc = "Processing...")

    output_image = pipe(seeds=[seed], width = output_width, height = output_height, prompt = prompt, negative_prompt = negative_prompt, image = enlarged_image, mask_image = mask_image, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, denoising_steps = denoising_steps, show_progress_bar = True).images[0]

    if debug_mode == False:
        input_image = None
        enlarged_image = None
        mask_image = None

    end = time.time()
    return [
        output_image,
        "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + str(output_width * output_height) + " pixels." + limitation,
        input_image,
        enlarged_image,
        mask_image
    ]

title = "Uncrop"
description = "<p style='text-align: center;'>Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p><br/><br/>🚀 Powered by <i>SDXL 1.0</i> artificial intellingence<br/><ul><li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li><li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li><li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li><li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li></ul><br/>🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/><a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a><br/><br/>⚖️ You can use, modify and share the generated images but not for commercial uses."
gr.Interface(fn = predict, inputs = [
    gr.Image(label = "Your image", source = "upload", type = "numpy"),
    gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top", info = "in pixels"),
    gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right", info = "in pixels"),
    gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom", info = "in pixels"),
    gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left", info = "in pixels"),
    gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image'),
    gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur, watermark'),
    gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result"),
    gr.Slider(minimum = 10, maximum = 25, value = 10, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality"),
    gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt"),
    gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different"),
    gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)"),
    gr.Checkbox(label = "Debug mode", value = True, info = "Show intermediate results")
], outputs = [
    gr.Image(label = "Uncropped image"),
    gr.Label(label = "Information"),
    gr.Image(label = "Original image"),
    gr.Image(label = "Enlarged image"),
    gr.Image(label = "Mask image")
], title = title, description = description).launch(max_threads = True)