File size: 13,344 Bytes
bc6d2ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import gradio as gr
import openai
import json
import os
import time
from typing import List, Tuple, Optional
import requests
from datetime import datetime
class ChatbotManager:
def __init__(self):
self.conversation_history = []
self.current_api_key = None
self.current_model = "gpt-3.5-turbo"
self.system_prompt = "You are a helpful AI assistant. Respond in a friendly and informative manner."
self.max_tokens = 150
self.temperature = 0.7
def set_api_key(self, api_key: str) -> str:
"""Set the OpenAI API key"""
if not api_key.strip():
return "β Please enter a valid API key"
self.current_api_key = api_key.strip()
openai.api_key = self.current_api_key
# Test the API key
try:
openai.Model.list()
return "β
API key validated successfully!"
except Exception as e:
return f"β Invalid API key: {str(e)}"
def update_settings(self, model: str, system_prompt: str, max_tokens: int, temperature: float) -> str:
"""Update chatbot settings"""
self.current_model = model
self.system_prompt = system_prompt
self.max_tokens = max_tokens
self.temperature = temperature
return f"β
Settings updated: Model={model}, Max Tokens={max_tokens}, Temperature={temperature}"
def preprocess_data(self, data_text: str) -> str:
"""Preprocess and integrate custom data into the system prompt"""
if not data_text.strip():
return "No custom data provided"
# Add custom data to system prompt
self.system_prompt += f"\n\nAdditional Context:\n{data_text}"
return f"β
Custom data integrated ({len(data_text)} characters)"
def generate_response(self, user_input: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
"""Generate response using the selected LLM model"""
if not self.current_api_key:
return "β Please set your API key first!", history
if not user_input.strip():
return "Please enter a message.", history
try:
# Prepare conversation context
messages = [{"role": "system", "content": self.system_prompt}]
# Add conversation history
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
# Add current user input
messages.append({"role": "user", "content": user_input})
# Generate response
response = openai.ChatCompletion.create(
model=self.current_model,
messages=messages,
max_tokens=self.max_tokens,
temperature=self.temperature,
n=1,
stop=None,
)
assistant_response = response.choices[0].message.content.strip()
# Update history
history.append((user_input, assistant_response))
return assistant_response, history
except Exception as e:
error_msg = f"β Error generating response: {str(e)}"
return error_msg, history
def clear_conversation(self) -> Tuple[str, List[Tuple[str, str]]]:
"""Clear conversation history"""
self.conversation_history = []
return "", []
def export_conversation(self, history: List[Tuple[str, str]]) -> str:
"""Export conversation history to JSON format"""
if not history:
return "No conversation to export"
export_data = {
"timestamp": datetime.now().isoformat(),
"model": self.current_model,
"conversation": [
{"user": user_msg, "assistant": assistant_msg}
for user_msg, assistant_msg in history
]
}
filename = f"conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
try:
with open(filename, 'w', encoding='utf-8') as f:
json.dump(export_data, f, indent=2, ensure_ascii=False)
return f"β
Conversation exported to {filename}"
except Exception as e:
return f"β Export failed: {str(e)}"
# Initialize chatbot manager
chatbot = ChatbotManager()
# Define available models
AVAILABLE_MODELS = [
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-4",
"gpt-4-32k",
"gpt-4-turbo-preview",
"gpt-4o",
"gpt-4o-mini"
]
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(title="LLM-Based Chatbot", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π€ LLM-Based Conversational AI Chatbot
This chatbot leverages powerful Language Models to provide intelligent conversations.
Enter your OpenAI API key to get started!
""")
with gr.Tab("π¬ Chat Interface"):
with gr.Row():
with gr.Column(scale=3):
chatbot_interface = gr.Chatbot(
label="Conversation",
height=400,
show_label=True,
avatar_images=("π€", "π€")
)
with gr.Row():
user_input = gr.Textbox(
placeholder="Type your message here...",
scale=4,
show_label=False
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary")
export_btn = gr.Button("Export Chat", variant="secondary")
with gr.Column(scale=1):
gr.Markdown("### π§ Quick Settings")
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password"
)
api_status = gr.Textbox(
label="API Status",
interactive=False,
value="β No API key provided"
)
model_dropdown = gr.Dropdown(
choices=AVAILABLE_MODELS,
value="gpt-3.5-turbo",
label="Model"
)
max_tokens_slider = gr.Slider(
minimum=50,
maximum=500,
value=150,
step=10,
label="Max Tokens"
)
temperature_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature"
)
with gr.Tab("βοΈ Advanced Settings"):
gr.Markdown("### System Prompt Configuration")
system_prompt_input = gr.Textbox(
label="System Prompt",
value="You are a helpful AI assistant. Respond in a friendly and informative manner.",
lines=5,
placeholder="Enter custom system prompt..."
)
gr.Markdown("### π Custom Data Integration")
custom_data_input = gr.Textbox(
label="Custom Training Data",
lines=10,
placeholder="Enter custom data, FAQs, or domain-specific information..."
)
with gr.Row():
update_settings_btn = gr.Button("Update Settings", variant="primary")
integrate_data_btn = gr.Button("Integrate Custom Data", variant="secondary")
settings_status = gr.Textbox(
label="Settings Status",
interactive=False
)
with gr.Tab("π Usage Guide"):
gr.Markdown("""
## π Getting Started
### 1. **Set Up API Key**
- Obtain an OpenAI API key from [OpenAI Platform](https://platform.openai.com/)
- Enter your API key in the "OpenAI API Key" field
- Wait for the green checkmark confirmation
### 2. **Configure Settings**
- **Model**: Choose from available GPT models
- **Max Tokens**: Control response length (50-500)
- **Temperature**: Adjust creativity (0.0 = focused, 1.0 = creative)
### 3. **Advanced Customization**
- **System Prompt**: Define the AI's personality and behavior
- **Custom Data**: Add domain-specific information or FAQs
### 4. **Chat Features**
- Type messages and get intelligent responses
- Clear conversation history anytime
- Export chat history as JSON
## π οΈ Technical Features
- **Multi-model support**: GPT-3.5, GPT-4, and variants
- **Conversation memory**: Maintains context throughout the session
- **Custom data integration**: Enhance responses with your own data
- **Export functionality**: Save conversations for later analysis
- **Real-time validation**: API key and settings verification
## π‘ Use Cases
- **Customer Support**: Create domain-specific support chatbots
- **Education**: Build tutoring assistants with custom curriculum
- **Business**: Develop FAQ bots with company-specific information
- **Research**: Analyze conversations and response patterns
""")
# Event handlers
def handle_api_key(api_key):
status = chatbot.set_api_key(api_key)
return status
def handle_chat(user_input, history):
if not user_input.strip():
return history, ""
response, updated_history = chatbot.generate_response(user_input, history)
return updated_history, ""
def handle_settings_update(model, system_prompt, max_tokens, temperature):
status = chatbot.update_settings(model, system_prompt, max_tokens, temperature)
return status
def handle_data_integration(custom_data):
status = chatbot.preprocess_data(custom_data)
return status
def handle_clear():
return chatbot.clear_conversation()
def handle_export(history):
return chatbot.export_conversation(history)
# Connect events
api_key_input.change(
handle_api_key,
inputs=[api_key_input],
outputs=[api_status]
)
send_btn.click(
handle_chat,
inputs=[user_input, chatbot_interface],
outputs=[chatbot_interface, user_input]
)
user_input.submit(
handle_chat,
inputs=[user_input, chatbot_interface],
outputs=[chatbot_interface, user_input]
)
update_settings_btn.click(
handle_settings_update,
inputs=[model_dropdown, system_prompt_input, max_tokens_slider, temperature_slider],
outputs=[settings_status]
)
integrate_data_btn.click(
handle_data_integration,
inputs=[custom_data_input],
outputs=[settings_status]
)
clear_btn.click(
handle_clear,
outputs=[user_input, chatbot_interface]
)
export_btn.click(
handle_export,
inputs=[chatbot_interface],
outputs=[settings_status]
)
return demo
# Requirements and setup instructions
def print_setup_instructions():
"""Print setup instructions"""
print("""
π€ LLM-Based Chatbot Setup Instructions
=====================================
π¦ Required Dependencies:
pip install gradio openai requests
π API Key Setup:
1. Visit https://platform.openai.com/
2. Create an account and generate an API key
3. Enter the API key in the interface
π Running the Application:
python app.py
π Files Created:
- conversation_YYYYMMDD_HHMMSS.json (exported chats)
""")
if __name__ == "__main__":
print_setup_instructions()
# Create and launch the interface
demo = create_interface()
# Launch with custom settings
demo.launch(
share=True
) |