Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from transformers import BertTokenizer, BertModel
|
| 6 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
| 7 |
+
from sklearn.ensemble import IsolationForest
|
| 8 |
+
import warnings
|
| 9 |
+
warnings.filterwarnings('ignore')
|
| 10 |
+
|
| 11 |
+
class FraudDetectionTester:
|
| 12 |
+
def __init__(self, model_path='fraud_detection_model.pth'):
|
| 13 |
+
"""Initialize the fraud detection tester"""
|
| 14 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
+
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 16 |
+
self.model_path = model_path
|
| 17 |
+
self.model = None
|
| 18 |
+
self.scaler = None
|
| 19 |
+
self.label_encoder = None
|
| 20 |
+
self.isolation_forest = None
|
| 21 |
+
|
| 22 |
+
# Load the model
|
| 23 |
+
self.load_model()
|
| 24 |
+
|
| 25 |
+
def create_bert_fraud_model(self, numerical_features_dim):
|
| 26 |
+
"""Recreate the BERT fraud detection model architecture"""
|
| 27 |
+
|
| 28 |
+
class BERTFraudDetector(nn.Module):
|
| 29 |
+
def __init__(self, bert_model_name, numerical_features_dim, dropout_rate=0.3):
|
| 30 |
+
super(BERTFraudDetector, self).__init__()
|
| 31 |
+
|
| 32 |
+
# BERT for text processing
|
| 33 |
+
self.bert = BertModel.from_pretrained(bert_model_name)
|
| 34 |
+
|
| 35 |
+
# Freeze BERT parameters for faster training (optional)
|
| 36 |
+
for param in self.bert.parameters():
|
| 37 |
+
param.requires_grad = False
|
| 38 |
+
|
| 39 |
+
# Unfreeze last few layers for fine-tuning
|
| 40 |
+
for param in self.bert.encoder.layer[-2:].parameters():
|
| 41 |
+
param.requires_grad = True
|
| 42 |
+
|
| 43 |
+
# Feature processing layers
|
| 44 |
+
self.text_projection = nn.Linear(self.bert.config.hidden_size, 256)
|
| 45 |
+
self.numerical_projection = nn.Linear(numerical_features_dim, 256)
|
| 46 |
+
|
| 47 |
+
# Anomaly detection features
|
| 48 |
+
self.anomaly_detector = nn.Sequential(
|
| 49 |
+
nn.Linear(256, 128),
|
| 50 |
+
nn.ReLU(),
|
| 51 |
+
nn.Dropout(dropout_rate),
|
| 52 |
+
nn.Linear(128, 64),
|
| 53 |
+
nn.ReLU(),
|
| 54 |
+
nn.Linear(64, 1)
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Combined classifier
|
| 58 |
+
self.classifier = nn.Sequential(
|
| 59 |
+
nn.Linear(512 + 1, 256), # 256 + 256 + 1 (anomaly score)
|
| 60 |
+
nn.ReLU(),
|
| 61 |
+
nn.Dropout(dropout_rate),
|
| 62 |
+
nn.Linear(256, 128),
|
| 63 |
+
nn.ReLU(),
|
| 64 |
+
nn.Dropout(dropout_rate),
|
| 65 |
+
nn.Linear(128, 64),
|
| 66 |
+
nn.ReLU(),
|
| 67 |
+
nn.Linear(64, 1),
|
| 68 |
+
nn.Sigmoid()
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def forward(self, input_ids, attention_mask, numerical_features):
|
| 72 |
+
# Process text with BERT
|
| 73 |
+
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 74 |
+
text_features = self.text_projection(bert_output.pooler_output)
|
| 75 |
+
|
| 76 |
+
# Process numerical features
|
| 77 |
+
numerical_features = self.numerical_projection(numerical_features)
|
| 78 |
+
|
| 79 |
+
# Anomaly detection
|
| 80 |
+
anomaly_score = self.anomaly_detector(numerical_features)
|
| 81 |
+
|
| 82 |
+
# Combine all features
|
| 83 |
+
combined_features = torch.cat([text_features, numerical_features, anomaly_score], dim=1)
|
| 84 |
+
|
| 85 |
+
# Final classification
|
| 86 |
+
fraud_probability = self.classifier(combined_features)
|
| 87 |
+
|
| 88 |
+
return fraud_probability.squeeze(), anomaly_score.squeeze()
|
| 89 |
+
|
| 90 |
+
return BERTFraudDetector('bert-base-uncased', numerical_features_dim)
|
| 91 |
+
|
| 92 |
+
def load_model(self):
|
| 93 |
+
"""Load the pre-trained fraud detection model"""
|
| 94 |
+
try:
|
| 95 |
+
print(f"π Loading model from {self.model_path}...")
|
| 96 |
+
|
| 97 |
+
# Add safe globals for sklearn objects
|
| 98 |
+
torch.serialization.add_safe_globals([
|
| 99 |
+
StandardScaler,
|
| 100 |
+
LabelEncoder,
|
| 101 |
+
IsolationForest
|
| 102 |
+
])
|
| 103 |
+
|
| 104 |
+
# Load with weights_only=False for backward compatibility
|
| 105 |
+
# This is safe if you trust the source of the model file
|
| 106 |
+
checkpoint = torch.load(self.model_path, map_location=self.device, weights_only=False)
|
| 107 |
+
|
| 108 |
+
# Load preprocessing objects
|
| 109 |
+
self.scaler = checkpoint['scaler']
|
| 110 |
+
self.label_encoder = checkpoint['label_encoder']
|
| 111 |
+
self.isolation_forest = checkpoint['isolation_forest']
|
| 112 |
+
|
| 113 |
+
# Create and load model
|
| 114 |
+
numerical_features_dim = 14 # Same as training
|
| 115 |
+
self.model = self.create_bert_fraud_model(numerical_features_dim)
|
| 116 |
+
self.model.load_state_dict(checkpoint['model_state_dict'])
|
| 117 |
+
self.model.to(self.device)
|
| 118 |
+
self.model.eval()
|
| 119 |
+
|
| 120 |
+
print("β
Model loaded successfully!")
|
| 121 |
+
|
| 122 |
+
except FileNotFoundError:
|
| 123 |
+
print(f"β Error: Model file '{self.model_path}' not found!")
|
| 124 |
+
print("Make sure you have trained and saved the model first.")
|
| 125 |
+
raise
|
| 126 |
+
except Exception as e:
|
| 127 |
+
print(f"β Error loading model: {str(e)}")
|
| 128 |
+
print("If you're still getting errors, try updating PyTorch or ensure the model file is from a trusted source.")
|
| 129 |
+
raise
|
| 130 |
+
|
| 131 |
+
def tokenize_descriptions(self, descriptions, max_length=128):
|
| 132 |
+
"""Tokenize transaction descriptions for BERT"""
|
| 133 |
+
# Convert pandas Series to list if needed
|
| 134 |
+
if hasattr(descriptions, 'tolist'):
|
| 135 |
+
descriptions = descriptions.tolist()
|
| 136 |
+
elif isinstance(descriptions, str):
|
| 137 |
+
descriptions = [descriptions]
|
| 138 |
+
elif not isinstance(descriptions, list):
|
| 139 |
+
descriptions = list(descriptions)
|
| 140 |
+
|
| 141 |
+
# Ensure all descriptions are strings
|
| 142 |
+
descriptions = [str(desc) for desc in descriptions]
|
| 143 |
+
|
| 144 |
+
encoded = self.tokenizer(
|
| 145 |
+
descriptions,
|
| 146 |
+
truncation=True,
|
| 147 |
+
padding=True,
|
| 148 |
+
max_length=max_length,
|
| 149 |
+
return_tensors='pt'
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
return encoded['input_ids'], encoded['attention_mask']
|
| 153 |
+
|
| 154 |
+
def preprocess_single_transaction(self, transaction):
|
| 155 |
+
"""Preprocess a single transaction for prediction"""
|
| 156 |
+
# Create DataFrame from transaction
|
| 157 |
+
if isinstance(transaction, dict):
|
| 158 |
+
df = pd.DataFrame([transaction])
|
| 159 |
+
else:
|
| 160 |
+
df = pd.DataFrame(transaction)
|
| 161 |
+
|
| 162 |
+
# Feature engineering (same as training)
|
| 163 |
+
df['amount_log'] = np.log1p(df['amount'])
|
| 164 |
+
df['is_weekend'] = (df['day_of_week'] >= 5).astype(int)
|
| 165 |
+
df['is_night'] = ((df['hour'] >= 22) | (df['hour'] <= 6)).astype(int)
|
| 166 |
+
df['high_frequency'] = (df['transaction_count_1h'] > 3).astype(int)
|
| 167 |
+
df['amount_deviation'] = abs(df['amount'] - df['avg_amount_1h']) / (df['avg_amount_1h'] + 1)
|
| 168 |
+
|
| 169 |
+
# Handle unknown categories for merchant_category
|
| 170 |
+
try:
|
| 171 |
+
df['merchant_category_encoded'] = self.label_encoder.transform(df['merchant_category'])
|
| 172 |
+
except ValueError as e:
|
| 173 |
+
print(f"β οΈ Warning: Unknown merchant category '{df['merchant_category'].iloc[0]}'. Using default value.")
|
| 174 |
+
# Use the first category as default or assign a default encoded value
|
| 175 |
+
df['merchant_category_encoded'] = 0
|
| 176 |
+
|
| 177 |
+
# Prepare numerical features
|
| 178 |
+
numerical_features = ['amount_log', 'hour', 'day_of_week', 'days_since_last_transaction',
|
| 179 |
+
'transaction_count_1h', 'transaction_count_24h', 'avg_amount_1h',
|
| 180 |
+
'location_risk_score', 'account_age_days', 'merchant_category_encoded',
|
| 181 |
+
'is_weekend', 'is_night', 'high_frequency', 'amount_deviation']
|
| 182 |
+
|
| 183 |
+
X_numerical = self.scaler.transform(df[numerical_features])
|
| 184 |
+
|
| 185 |
+
# Process text - ensure it's a string
|
| 186 |
+
df['processed_description'] = df['description'].astype(str).str.lower().str.replace(r'[^\w\s]', '', regex=True)
|
| 187 |
+
|
| 188 |
+
return df, X_numerical
|
| 189 |
+
|
| 190 |
+
def predict_fraud(self, transactions):
|
| 191 |
+
"""Predict fraud for one or more transactions"""
|
| 192 |
+
print("π Analyzing transactions for fraud...")
|
| 193 |
+
|
| 194 |
+
# Handle single transaction
|
| 195 |
+
if isinstance(transactions, dict):
|
| 196 |
+
transactions = [transactions]
|
| 197 |
+
|
| 198 |
+
results = []
|
| 199 |
+
|
| 200 |
+
for i, transaction in enumerate(transactions):
|
| 201 |
+
try:
|
| 202 |
+
# Preprocess transaction
|
| 203 |
+
df, X_numerical = self.preprocess_single_transaction(transaction)
|
| 204 |
+
|
| 205 |
+
# Tokenize description - extract the actual string values
|
| 206 |
+
processed_descriptions = df['processed_description'].tolist()
|
| 207 |
+
input_ids, attention_masks = self.tokenize_descriptions(processed_descriptions)
|
| 208 |
+
|
| 209 |
+
# Make prediction
|
| 210 |
+
with torch.no_grad():
|
| 211 |
+
batch_num = torch.tensor(X_numerical).float().to(self.device)
|
| 212 |
+
batch_ids = input_ids.to(self.device)
|
| 213 |
+
batch_masks = attention_masks.to(self.device)
|
| 214 |
+
|
| 215 |
+
fraud_prob, anomaly_score = self.model(batch_ids, batch_masks, batch_num)
|
| 216 |
+
|
| 217 |
+
# Get isolation forest prediction
|
| 218 |
+
isolation_pred = self.isolation_forest.decision_function(X_numerical)
|
| 219 |
+
|
| 220 |
+
# Handle single prediction vs batch
|
| 221 |
+
if isinstance(fraud_prob, torch.Tensor):
|
| 222 |
+
if fraud_prob.dim() == 0: # Single prediction
|
| 223 |
+
fraud_prob_val = fraud_prob.item()
|
| 224 |
+
anomaly_score_val = anomaly_score.item()
|
| 225 |
+
else: # Batch prediction
|
| 226 |
+
fraud_prob_val = fraud_prob[0].item()
|
| 227 |
+
anomaly_score_val = anomaly_score[0].item()
|
| 228 |
+
else:
|
| 229 |
+
fraud_prob_val = float(fraud_prob)
|
| 230 |
+
anomaly_score_val = float(anomaly_score)
|
| 231 |
+
|
| 232 |
+
# Combine predictions (ensemble approach)
|
| 233 |
+
combined_score = (0.6 * fraud_prob_val +
|
| 234 |
+
0.3 * (1 - (isolation_pred[0] + 0.5)) +
|
| 235 |
+
0.1 * anomaly_score_val)
|
| 236 |
+
|
| 237 |
+
# Create result
|
| 238 |
+
result = {
|
| 239 |
+
'transaction_id': transaction.get('transaction_id', f'test_{i+1}'),
|
| 240 |
+
'amount': transaction['amount'],
|
| 241 |
+
'description': transaction['description'],
|
| 242 |
+
'fraud_probability': float(combined_score),
|
| 243 |
+
'is_fraud_predicted': bool(combined_score > 0.5),
|
| 244 |
+
'risk_level': self.get_risk_level(combined_score),
|
| 245 |
+
'anomaly_score': float(anomaly_score_val),
|
| 246 |
+
'bert_score': float(fraud_prob_val),
|
| 247 |
+
'isolation_score': float(isolation_pred[0])
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
results.append(result)
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
print(f"β Error processing transaction {i+1}: {str(e)}")
|
| 254 |
+
import traceback
|
| 255 |
+
traceback.print_exc() # Print full error traceback for debugging
|
| 256 |
+
results.append({
|
| 257 |
+
'transaction_id': transaction.get('transaction_id', f'test_{i+1}'),
|
| 258 |
+
'error': str(e)
|
| 259 |
+
})
|
| 260 |
+
|
| 261 |
+
return results
|
| 262 |
+
|
| 263 |
+
def get_risk_level(self, score):
|
| 264 |
+
"""Determine risk level based on fraud probability"""
|
| 265 |
+
if score > 0.8:
|
| 266 |
+
return 'CRITICAL'
|
| 267 |
+
elif score > 0.6:
|
| 268 |
+
return 'HIGH'
|
| 269 |
+
elif score > 0.4:
|
| 270 |
+
return 'MEDIUM'
|
| 271 |
+
elif score > 0.2:
|
| 272 |
+
return 'LOW'
|
| 273 |
+
else:
|
| 274 |
+
return 'MINIMAL'
|
| 275 |
+
|
| 276 |
+
def display_results(self, results):
|
| 277 |
+
"""Display prediction results in a nice format"""
|
| 278 |
+
print("\n" + "="*80)
|
| 279 |
+
print("π¨ FRAUD DETECTION RESULTS")
|
| 280 |
+
print("="*80)
|
| 281 |
+
|
| 282 |
+
for i, result in enumerate(results):
|
| 283 |
+
if 'error' in result:
|
| 284 |
+
print(f"\nβ Transaction {i+1}: ERROR - {result['error']}")
|
| 285 |
+
continue
|
| 286 |
+
|
| 287 |
+
print(f"\nπ Transaction {i+1}:")
|
| 288 |
+
print(f" ID: {result['transaction_id']}")
|
| 289 |
+
print(f" Amount: ${result['amount']:.2f}")
|
| 290 |
+
print(f" Description: {result['description']}")
|
| 291 |
+
print(f" π― Fraud Probability: {result['fraud_probability']:.4f} ({result['fraud_probability']*100:.2f}%)")
|
| 292 |
+
|
| 293 |
+
# Color-coded prediction
|
| 294 |
+
if result['is_fraud_predicted']:
|
| 295 |
+
print(f" π¨ Prediction: FRAUD DETECTED")
|
| 296 |
+
else:
|
| 297 |
+
print(f" β
Prediction: LEGITIMATE")
|
| 298 |
+
|
| 299 |
+
print(f" π Risk Level: {result['risk_level']}")
|
| 300 |
+
print(f" π Anomaly Score: {result['anomaly_score']:.4f}")
|
| 301 |
+
print(f" π€ BERT Score: {result['bert_score']:.4f}")
|
| 302 |
+
print(f" ποΈ Isolation Score: {result['isolation_score']:.4f}")
|
| 303 |
+
|
| 304 |
+
# Risk indicator
|
| 305 |
+
risk_bar = "β" * int(result['fraud_probability'] * 20)
|
| 306 |
+
print(f" π Risk Meter: [{risk_bar:<20}] {result['fraud_probability']*100:.1f}%")
|
| 307 |
+
|
| 308 |
+
print("\n" + "="*80)
|
| 309 |
+
|
| 310 |
+
def create_sample_transactions():
|
| 311 |
+
"""Create sample transactions for testing"""
|
| 312 |
+
return [
|
| 313 |
+
{
|
| 314 |
+
'transaction_id': 'TEST_001',
|
| 315 |
+
'amount': 45.67,
|
| 316 |
+
'merchant_category': 'grocery',
|
| 317 |
+
'description': 'WALMART SUPERCENTER CA 1234',
|
| 318 |
+
'hour': 14,
|
| 319 |
+
'day_of_week': 2,
|
| 320 |
+
'days_since_last_transaction': 1.0,
|
| 321 |
+
'transaction_count_1h': 1,
|
| 322 |
+
'transaction_count_24h': 3,
|
| 323 |
+
'avg_amount_1h': 50.0,
|
| 324 |
+
'location_risk_score': 0.1,
|
| 325 |
+
'account_age_days': 730
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
'transaction_id': 'TEST_002',
|
| 329 |
+
'amount': 2999.99,
|
| 330 |
+
'merchant_category': 'online',
|
| 331 |
+
'description': 'SUSPICIOUS ELECTRONICS STORE XX 9999',
|
| 332 |
+
'hour': 3,
|
| 333 |
+
'day_of_week': 6,
|
| 334 |
+
'days_since_last_transaction': 60.0,
|
| 335 |
+
'transaction_count_1h': 12,
|
| 336 |
+
'transaction_count_24h': 25,
|
| 337 |
+
'avg_amount_1h': 150.0,
|
| 338 |
+
'location_risk_score': 0.95,
|
| 339 |
+
'account_age_days': 15
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
'transaction_id': 'TEST_003',
|
| 343 |
+
'amount': 89.50,
|
| 344 |
+
'merchant_category': 'restaurant',
|
| 345 |
+
'description': 'STARBUCKS COFFEE NY 5678',
|
| 346 |
+
'hour': 8,
|
| 347 |
+
'day_of_week': 1,
|
| 348 |
+
'days_since_last_transaction': 0.5,
|
| 349 |
+
'transaction_count_1h': 1,
|
| 350 |
+
'transaction_count_24h': 4,
|
| 351 |
+
'avg_amount_1h': 85.0,
|
| 352 |
+
'location_risk_score': 0.2,
|
| 353 |
+
'account_age_days': 1095
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
'transaction_id': 'TEST_004',
|
| 357 |
+
'amount': 500.00,
|
| 358 |
+
'merchant_category': 'atm',
|
| 359 |
+
'description': 'ATM WITHDRAWAL FOREIGN COUNTRY 0000',
|
| 360 |
+
'hour': 23,
|
| 361 |
+
'day_of_week': 0,
|
| 362 |
+
'days_since_last_transaction': 0.1,
|
| 363 |
+
'transaction_count_1h': 5,
|
| 364 |
+
'transaction_count_24h': 8,
|
| 365 |
+
'avg_amount_1h': 200.0,
|
| 366 |
+
'location_risk_score': 0.8,
|
| 367 |
+
'account_age_days': 365
|
| 368 |
+
}
|
| 369 |
+
]
|
| 370 |
+
|
| 371 |
+
def create_custom_transaction():
|
| 372 |
+
"""Interactive function to create custom transaction"""
|
| 373 |
+
print("\nπ οΈ CREATE CUSTOM TRANSACTION")
|
| 374 |
+
print("-" * 40)
|
| 375 |
+
|
| 376 |
+
transaction = {}
|
| 377 |
+
|
| 378 |
+
try:
|
| 379 |
+
transaction['transaction_id'] = input("Transaction ID (optional): ") or 'CUSTOM_001'
|
| 380 |
+
transaction['amount'] = float(input("Amount ($): "))
|
| 381 |
+
|
| 382 |
+
print("Merchant categories: grocery, gas_station, restaurant, online, retail, atm")
|
| 383 |
+
transaction['merchant_category'] = input("Merchant category: ") or 'online'
|
| 384 |
+
|
| 385 |
+
transaction['description'] = input("Transaction description: ") or 'Unknown merchant'
|
| 386 |
+
transaction['hour'] = int(input("Hour (0-23): "))
|
| 387 |
+
transaction['day_of_week'] = int(input("Day of week (0=Monday, 6=Sunday): "))
|
| 388 |
+
transaction['days_since_last_transaction'] = float(input("Days since last transaction: "))
|
| 389 |
+
transaction['transaction_count_1h'] = int(input("Transactions in last hour: "))
|
| 390 |
+
transaction['transaction_count_24h'] = int(input("Transactions in last 24 hours: "))
|
| 391 |
+
transaction['avg_amount_1h'] = float(input("Average amount in last hour ($): "))
|
| 392 |
+
transaction['location_risk_score'] = float(input("Location risk score (0-1): "))
|
| 393 |
+
transaction['account_age_days'] = float(input("Account age in days: "))
|
| 394 |
+
|
| 395 |
+
return transaction
|
| 396 |
+
|
| 397 |
+
except ValueError as e:
|
| 398 |
+
print(f"β Invalid input: {e}")
|
| 399 |
+
return None
|
| 400 |
+
|
| 401 |
+
def main():
|
| 402 |
+
"""Main testing function"""
|
| 403 |
+
print("π FRAUD DETECTION MODEL TESTER")
|
| 404 |
+
print("="*50)
|
| 405 |
+
|
| 406 |
+
# Initialize tester
|
| 407 |
+
try:
|
| 408 |
+
tester = FraudDetectionTester('fraud_detection_model.pth')
|
| 409 |
+
except:
|
| 410 |
+
print("Make sure you have the trained model file 'fraud_detection_model.pth' in the same directory!")
|
| 411 |
+
return
|
| 412 |
+
|
| 413 |
+
while True:
|
| 414 |
+
print("\nπ TESTING OPTIONS:")
|
| 415 |
+
print("1. Test with sample transactions")
|
| 416 |
+
print("2. Create custom transaction")
|
| 417 |
+
print("3. Test single transaction")
|
| 418 |
+
print("4. Exit")
|
| 419 |
+
|
| 420 |
+
choice = input("\nEnter your choice (1-4): ").strip()
|
| 421 |
+
|
| 422 |
+
if choice == '1':
|
| 423 |
+
# Test with sample transactions
|
| 424 |
+
sample_transactions = create_sample_transactions()
|
| 425 |
+
results = tester.predict_fraud(sample_transactions)
|
| 426 |
+
tester.display_results(results)
|
| 427 |
+
|
| 428 |
+
elif choice == '2':
|
| 429 |
+
# Create custom transaction
|
| 430 |
+
custom_transaction = create_custom_transaction()
|
| 431 |
+
if custom_transaction:
|
| 432 |
+
results = tester.predict_fraud([custom_transaction])
|
| 433 |
+
tester.display_results(results)
|
| 434 |
+
|
| 435 |
+
elif choice == '3':
|
| 436 |
+
# Quick single transaction test
|
| 437 |
+
print("\nβ‘ QUICK TRANSACTION TEST")
|
| 438 |
+
print("-" * 30)
|
| 439 |
+
|
| 440 |
+
try:
|
| 441 |
+
quick_transaction = {
|
| 442 |
+
'transaction_id': 'QUICK_TEST',
|
| 443 |
+
'amount': float(input("Amount ($): ")),
|
| 444 |
+
'merchant_category': 'online',
|
| 445 |
+
'description': input("Description: ") or 'Unknown transaction',
|
| 446 |
+
'hour': int(input("Hour (0-23): ")),
|
| 447 |
+
'day_of_week': 2,
|
| 448 |
+
'days_since_last_transaction': 1.0,
|
| 449 |
+
'transaction_count_1h': int(input("Transactions in last hour: ")),
|
| 450 |
+
'transaction_count_24h': 5,
|
| 451 |
+
'avg_amount_1h': 100.0,
|
| 452 |
+
'location_risk_score': float(input("Risk score (0-1): ")),
|
| 453 |
+
'account_age_days': 365
|
| 454 |
+
}
|
| 455 |
+
|
| 456 |
+
results = tester.predict_fraud([quick_transaction])
|
| 457 |
+
tester.display_results(results)
|
| 458 |
+
|
| 459 |
+
except ValueError as e:
|
| 460 |
+
print(f"β Invalid input: {e}")
|
| 461 |
+
|
| 462 |
+
elif choice == '4':
|
| 463 |
+
print("π Goodbye!")
|
| 464 |
+
break
|
| 465 |
+
|
| 466 |
+
else:
|
| 467 |
+
print("β Invalid choice! Please enter 1-4.")
|
| 468 |
+
|
| 469 |
+
if __name__ == "__main__":
|
| 470 |
+
main()
|