|
import streamlit as st
|
|
import pandas as pd
|
|
import plotly.graph_objects as go
|
|
|
|
|
|
file_path = 'Dhaka Metro Rail Fare 2.XLSX'
|
|
df = pd.read_excel(file_path)
|
|
|
|
|
|
required_columns = ['Origin', 'Destination', 'Fare (৳)']
|
|
if not all(col in df.columns for col in required_columns):
|
|
st.write("Please ensure the file contains 'Origin', 'Destination', and 'Fare' columns.")
|
|
else:
|
|
|
|
coordinates = {
|
|
"Uttara North": (23.869066, 90.367445),
|
|
"Uttara Center": (23.860118, 90.365106),
|
|
"Uttara South": (23.845934, 90.363175),
|
|
"Pallabi": (23.82619516961383, 90.36481554252525),
|
|
"Mirpur 11": (23.819438208310213, 90.36528532902963),
|
|
"Mirpur 10": (23.808582994847285, 90.36821595330717),
|
|
"Kazipara": (23.800017952100532, 90.37178261495391),
|
|
"Shewrapara": (23.79070140857881, 90.37564622631841),
|
|
"Agargaon": (23.778385546736345, 90.3800557456356),
|
|
"Bijoy Sarani": (23.766638127271825, 90.38307537134754),
|
|
"Farmgate": (23.75923604938459, 90.38694218434738),
|
|
"Kawran Bazar": (23.751392319539104, 90.39275707447003),
|
|
"Shahbagh": (23.740324209546923, 90.39600784811131),
|
|
"Dhaka University": (23.732091083122114, 90.39659408796354),
|
|
"Bangladesh Secretariat": (23.73004754106779, 90.40764881366906),
|
|
"Motijheel": (23.72816566933198, 90.41923497972823),
|
|
"Kamalapur": (23.732367758919807, 90.42547378971085)
|
|
}
|
|
|
|
|
|
df['Origin_Lat'] = df['Origin'].map(lambda x: coordinates.get(x, (None, None))[0])
|
|
df['Origin_Lon'] = df['Origin'].map(lambda x: coordinates.get(x, (None, None))[1])
|
|
df['Destination_Lat'] = df['Destination'].map(lambda x: coordinates.get(x, (None, None))[0])
|
|
df['Destination_Lon'] = df['Destination'].map(lambda x: coordinates.get(x, (None, None))[1])
|
|
|
|
|
|
df.dropna(subset=['Origin_Lat', 'Origin_Lon', 'Destination_Lat', 'Destination_Lon'], inplace=True)
|
|
|
|
|
|
st.title("Dhaka Metro Rail Fare Checker 🚇")
|
|
st.write("Below is the fare chart for Dhaka Metro Rail 💶:")
|
|
|
|
|
|
st.sidebar.title("Instructions")
|
|
st.sidebar.write("""
|
|
**Welcome to the Dhaka Metro Rail Fare Checker!**
|
|
|
|
*How to use:*
|
|
1. Select your **Location station** from the dropdown menu.
|
|
2. Select your **destination(s)** from the list. You can select multiple destinations.
|
|
3. The fare from your location to the selected destination(s) will be displayed below.
|
|
4. You can also see the stations marked on a map.
|
|
|
|
**Note:** The map highlights your location in green and destinations in blue.
|
|
|
|
If you face any issues or need further assistance, feel free to [Contact Support on WhatsApp](https://wa.me/+8801719296601).
|
|
""")
|
|
|
|
|
|
default_origin = "Select Journey from"
|
|
|
|
|
|
origin = st.selectbox(
|
|
"Select your Location:",
|
|
[default_origin] + df['Origin'].unique().tolist(),
|
|
index=0
|
|
)
|
|
|
|
|
|
if 'destination_select' not in st.session_state:
|
|
st.session_state.destination_select = []
|
|
|
|
|
|
destinations = st.multiselect(
|
|
"Select your destination(s):",
|
|
df['Destination'].unique(),
|
|
default=st.session_state.destination_select
|
|
)
|
|
|
|
|
|
st.session_state.destination_select = destinations
|
|
|
|
|
|
if origin == default_origin:
|
|
st.write("Please select a valid origin station to proceed.")
|
|
elif origin and destinations:
|
|
|
|
fare_data = df[(df['Origin'] == origin) & (df['Destination'].isin(destinations))]
|
|
|
|
|
|
if not fare_data.empty:
|
|
for index, row in fare_data.iterrows():
|
|
st.write(f"Fare from {origin} to {row['Destination']} is: {row['Fare (৳)']}৳")
|
|
else:
|
|
st.write("No fare data available for the selected origin and destinations.")
|
|
else:
|
|
st.write("Please select both an origin and at least one destination.")
|
|
|
|
|
|
fig = go.Figure()
|
|
|
|
|
|
unique_stations = pd.concat([df[['Origin', 'Origin_Lat', 'Origin_Lon']].rename(columns={'Origin': 'Station', 'Origin_Lat': 'Lat', 'Origin_Lon': 'Lon'}),
|
|
df[['Destination', 'Destination_Lat', 'Destination_Lon']].rename(columns={'Destination': 'Station', 'Destination_Lat': 'Lat', 'Destination_Lon': 'Lon'})]).drop_duplicates()
|
|
|
|
|
|
for i, row in unique_stations.iterrows():
|
|
if row['Station'] == origin:
|
|
|
|
fig.add_trace(go.Scattermapbox(
|
|
mode="markers+text",
|
|
lon=[row['Lon']],
|
|
lat=[row['Lat']],
|
|
marker={'size': 12, 'color': 'green'},
|
|
text=row['Station'],
|
|
textposition="top center",
|
|
name=row['Station'],
|
|
customdata=[row['Station']]
|
|
))
|
|
elif row['Station'] in destinations:
|
|
|
|
fig.add_trace(go.Scattermapbox(
|
|
mode="markers+text",
|
|
lon=[row['Lon']],
|
|
lat=[row['Lat']],
|
|
marker={'size': 12, 'color': 'blue'},
|
|
text=row['Station'],
|
|
textposition="top center",
|
|
name=row['Station'],
|
|
customdata=[row['Station']]
|
|
))
|
|
else:
|
|
|
|
fig.add_trace(go.Scattermapbox(
|
|
mode="markers+text",
|
|
lon=[row['Lon']],
|
|
lat=[row['Lat']],
|
|
marker={'size': 12, 'color': 'red'},
|
|
text=row['Station'],
|
|
textposition="top center",
|
|
name=row['Station'],
|
|
customdata=[row['Station']]
|
|
))
|
|
|
|
|
|
fig.update_layout(
|
|
mapbox=dict(
|
|
style="open-street-map",
|
|
center=go.layout.mapbox.Center(lat=23.780, lon=90.400),
|
|
zoom=11
|
|
),
|
|
margin={"r":0,"t":0,"l":0,"b":0},
|
|
showlegend=False,
|
|
title="Dhaka Metro Rail Location Map"
|
|
)
|
|
|
|
|
|
st.plotly_chart(fig)
|
|
|