DhakaMetroFare / app.py
shukdevdatta123's picture
Update app.py
34f45f4 verified
raw
history blame
6.5 kB
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import time
# Load the Excel file
file_path = 'Dhaka Metro Rail Fare 2.XLSX' # Ensure the correct file path
df = pd.read_excel(file_path)
# Coordinates for stations (same as in your original code)
coordinates = {
"Uttara North": (23.869066, 90.367445),
"Uttara Center": (23.860118, 90.365106),
"Uttara South": (23.845934, 90.363175),
"Pallabi": (23.82619516961383, 90.36481554252525),
"Mirpur 11": (23.819438208310213, 90.36528532902963),
"Mirpur 10": (23.808582994847285, 90.36821595330717),
"Kazipara": (23.800017952100532, 90.37178261495391),
"Shewrapara": (23.79070140857881, 90.37564622631841),
"Agargaon": (23.778385546736345, 90.3800557456356),
"Bijoy Sarani": (23.766638127271825, 90.38307537134754),
"Farmgate": (23.75923604938459, 90.38694218434738),
"Kawran Bazar": (23.751392319539104, 90.39275707447003),
"Shahbagh": (23.740324209546923, 90.39600784811131),
"Dhaka University": (23.732091083122114, 90.39659408796354),
"Bangladesh Secretariat": (23.73004754106779, 90.40764881366906),
"Motijheel": (23.72816566933198, 90.41923497972823),
"Kamalapur": (23.732367758919807, 90.42547378971085)
}
# Add latitude and longitude for origin and destination
df['Origin_Lat'] = df['Origin'].map(lambda x: coordinates.get(x, (None, None))[0])
df['Origin_Lon'] = df['Origin'].map(lambda x: coordinates.get(x, (None, None))[1])
df['Destination_Lat'] = df['Destination'].map(lambda x: coordinates.get(x, (None, None))[0])
df['Destination_Lon'] = df['Destination'].map(lambda x: coordinates.get(x, (None, None))[1])
# Filter rows with missing coordinates
df.dropna(subset=['Origin_Lat', 'Origin_Lon', 'Destination_Lat', 'Destination_Lon'], inplace=True)
# Streamlit UI setup
st.title("Dhaka Metro Rail Fare Checker 🚇")
st.write("Below is the fare chart for Dhaka Metro Rail 💶:")
# Dropdown for selecting origin (with "Select Journey from" as a default placeholder)
origin = st.selectbox(
"Select your Location:",
['Select Journey from'] + df['Origin'].unique().tolist()
)
# Display buttons for destinations
if origin != 'Select Journey from':
st.write(f"Select your destination(s) from {origin}:")
destinations = st.multiselect("Choose Destinations", df[df['Origin'] == origin]['Destination'].unique().tolist())
if destinations:
# Filter the dataframe based on user selection
fare_data = df[(df['Origin'] == origin) & (df['Destination'].isin(destinations))]
if not fare_data.empty:
for index, row in fare_data.iterrows():
origin_to_dest_fare = row['Fare (৳)']
destination = row['Destination']
st.write(f"Fare from {origin} to {destination}: {origin_to_dest_fare}৳")
# Map for Dhaka Metro
fig = go.Figure()
# Define train icon
train_icon = "train" # You can use Plotly's built-in train icon or any other icon if available
# Add markers for each unique station
unique_stations = pd.concat([df[['Origin', 'Origin_Lat', 'Origin_Lon']].rename(columns={'Origin': 'Station', 'Origin_Lat': 'Lat', 'Origin_Lon': 'Lon'}),
df[['Destination', 'Destination_Lat', 'Destination_Lon']].rename(columns={'Destination': 'Station', 'Destination_Lat': 'Lat', 'Destination_Lon': 'Lon'})]).drop_duplicates()
# Add markers for stations
for i, row in unique_stations.iterrows():
if row['Station'] == origin:
fig.add_trace(go.Scattermapbox(
mode="markers+text",
lon=[row['Lon']],
lat=[row['Lat']],
marker={'size': 12, 'color': 'green'},
text=row['Station'],
textposition="top center",
name=row['Station']
))
elif row['Station'] in destinations:
fig.add_trace(go.Scattermapbox(
mode="markers+text",
lon=[row['Lon']],
lat=[row['Lat']],
marker={'size': 12, 'color': 'blue'},
text=row['Station'],
textposition="top center",
name=row['Station']
))
# Add animated train movement
train_path = [] # Coordinates for the train's path
for destination in destinations:
destination_row = df[(df['Origin'] == origin) & (df['Destination'] == destination)].iloc[0]
path = [coordinates[origin], (destination_row['Destination_Lat'], destination_row['Destination_Lon'])]
train_path.extend(path)
# Animation to move the train along the path
for i in range(len(train_path)):
fig.add_trace(go.Scattermapbox(
mode="markers",
lon=[train_path[i][1]],
lat=[train_path[i][0]],
marker={'size': 20, 'symbol': train_icon, 'color': 'red'},
name="Train",
showlegend=False
))
# Map layout
fig.update_layout(
mapbox=dict(
style="open-street-map",
center=go.layout.mapbox.Center(lat=23.780, lon=90.400),
zoom=11
),
margin={"r":0,"t":0,"l":0,"b":0},
showlegend=False
)
# Set up animation frame and delay to move the train
frames = []
for i in range(1, len(train_path)):
frame = go.Frame(
data=[go.Scattermapbox(
mode="markers",
lon=[train_path[i][1]],
lat=[train_path[i][0]],
marker={'size': 20, 'symbol': train_icon, 'color': 'red'},
name="Train"
)],
name=f"Frame_{i}"
)
frames.append(frame)
fig.frames = frames
# Animate train movement
fig.update_layout(
updatemenus=[dict(
type="buttons",
showactive=False,
buttons=[dict(
label="Play",
method="animate",
args=[None, dict(frame=dict(duration=2000, redraw=True), fromcurrent=True)]
)]
)]
)
# Show plot in Streamlit
st.plotly_chart(fig)