|
import streamlit as st |
|
from langchain_community.document_loaders import PyPDFLoader |
|
import openai |
|
from langchain.prompts import ChatPromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain.chat_models import ChatOpenAI |
|
from fpdf import FPDF |
|
import os |
|
|
|
# Set up Streamlit UI |
|
st.title('Educational Assistant') |
|
st.header('Summary, Quiz Generator, Q&A, and Study Plan') |
|
st.sidebar.title('Drop your PDF here') |
|
|
|
# Input OpenAI API key from keyboard |
|
openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key", type="password") |
|
|
|
user_file_upload = st.sidebar.file_uploader(label='', type='pdf') |
|
|
|
# Sidebar option selection for Summary, Quiz, Q&A, or Study Plan |
|
option = st.sidebar.radio("Choose an option", ('Generate Summary', 'Generate Quiz', 'Ask a Question', 'Generate Study Plan')) |
|
|
|
# Input for asking questions (only visible when "Ask a Question" is selected) |
|
question_input = None |
|
if option == 'Ask a Question': |
|
question_input = st.text_input("Enter your question about the document:") |
|
|
|
# Function to generate a PDF and allow download |
|
def generate_pdf(response, filename="response.pdf"): |
|
pdf = FPDF() |
|
pdf.add_page() |
|
|
|
# Adding a Unicode-compatible font (like Arial Unicode MS or other compatible font) |
|
pdf.add_font('ArialUnicode', '', 'arialuni.ttf', uni=True) # Path to font, make sure this is correct for your system |
|
pdf.set_font('ArialUnicode', '', 12) |
|
|
|
# Add the response text |
|
pdf.multi_cell(0, 10, response) |
|
|
|
# Save to a temporary file |
|
pdf.output(filename) |
|
|
|
# Return the file path |
|
return filename |
|
|
|
if openai_api_key: |
|
# Set OpenAI API key |
|
openai.api_key = openai_api_key |
|
|
|
if user_file_upload: |
|
# Read the uploaded file |
|
pdf_data = user_file_upload.read() |
|
|
|
# Save the uploaded file to a temporary location |
|
with open("temp_pdf_file.pdf", "wb") as f: |
|
f.write(pdf_data) |
|
|
|
# Load the temporary PDF file |
|
loader = PyPDFLoader("temp_pdf_file.pdf") |
|
data = loader.load_and_split() |
|
|
|
## Prompt Template for Summary |
|
prompt_1 = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", "You are a smart assistant. Give a summary of the user's PDF. Be polite."), |
|
("user", "{data}") |
|
] |
|
) |
|
|
|
# Pass the OpenAI API key explicitly to the ChatOpenAI instance |
|
llm_summary = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) # Pass the key here |
|
output_parser = StrOutputParser() |
|
chain_1 = prompt_1 | llm_summary | output_parser |
|
|
|
## Prompt Template for Quiz |
|
prompt_2 = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", "You are a smart assistant. Generate 10 multiple-choice quiz questions with 4 options each (including correct and incorrect options) from the user's PDF. Please also include the correct answer in your response. Be polite."), |
|
("user", "{data}") |
|
] |
|
) |
|
|
|
# Pass the OpenAI API key explicitly to the ChatOpenAI instance |
|
llm_quiz = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) # Pass the key here |
|
output_parser = StrOutputParser() |
|
chain_2 = prompt_2 | llm_quiz | output_parser |
|
|
|
## Prompt Template for Question-Answering |
|
prompt_3 = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", "You are a smart assistant. Answer the user's question based on the content of the PDF. Be polite."), |
|
("user", "{data}\n\nUser's question: {question}") |
|
] |
|
) |
|
|
|
# Pass the OpenAI API key explicitly to the ChatOpenAI instance |
|
llm_qa = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) # Pass the key here |
|
output_parser = StrOutputParser() |
|
chain_3 = prompt_3 | llm_qa | output_parser |
|
|
|
## Prompt Template for Study Plan |
|
prompt_4 = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", "You are a smart assistant. Based on the content of the user's PDF, generate a 7-day study plan. Divide the content into 7 topics and assign each topic to a day. Please make it logical and balanced."), |
|
("user", "{data}") |
|
] |
|
) |
|
|
|
# Pass the OpenAI API key explicitly to the ChatOpenAI instance |
|
llm_study_plan = ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key) # Pass the key here |
|
output_parser = StrOutputParser() |
|
chain_4 = prompt_4 | llm_study_plan | output_parser |
|
|
|
if option == 'Generate Summary': |
|
# Generate summary |
|
summary_response = chain_1.invoke({'data': data}) |
|
st.write(summary_response) |
|
|
|
# Generate PDF for the summary and offer it as a download |
|
pdf_filename = generate_pdf(summary_response, filename="summary_response.pdf") |
|
st.download_button("Download Summary as PDF", data=open(pdf_filename, "rb").read(), file_name=pdf_filename, mime="application/pdf") |
|
|
|
elif option == 'Generate Quiz': |
|
# Generate quiz |
|
quiz_response = chain_2.invoke({'data': data}) |
|
st.write(quiz_response) |
|
|
|
# Generate PDF for the quiz and offer it as a download |
|
pdf_filename = generate_pdf(quiz_response, filename="quiz_response.pdf") |
|
st.download_button("Download Quiz as PDF", data=open(pdf_filename, "rb").read(), file_name=pdf_filename, mime="application/pdf") |
|
|
|
elif option == 'Ask a Question' and question_input: |
|
# Add a "Generate Answer" button |
|
generate_answer = st.button("Generate Answer") |
|
|
|
if generate_answer: |
|
# Generate answer for the user's question |
|
question_answer_response = chain_3.invoke({'data': data, 'question': question_input}) |
|
st.write(question_answer_response) |
|
|
|
# Generate PDF for the question answer and offer it as a download |
|
pdf_filename = generate_pdf(question_answer_response, filename="question_answer_response.pdf") |
|
st.download_button("Download Answer as PDF", data=open(pdf_filename, "rb").read(), file_name=pdf_filename, mime="application/pdf") |
|
|
|
elif option == 'Generate Study Plan': |
|
# Generate study plan |
|
study_plan_response = chain_4.invoke({'data': data}) |
|
st.write(study_plan_response) |
|
|
|
# Generate PDF for the study plan and offer it as a download |
|
pdf_filename = generate_pdf(study_plan_response, filename="study_plan_response.pdf") |
|
st.download_button("Download Study Plan as PDF", data=open(pdf_filename, "rb").read(), file_name=pdf_filename, mime="application/pdf") |
|
|
|
else: |
|
st.sidebar.warning("Please enter your OpenAI API Key to proceed.") |