EngToJap-2.0 / app.py
shukdevdatta123's picture
Update app.py
47f5fb9 verified
raw
history blame
7 kB
import openai
import os
import streamlit as st
from PIL import Image
from gtts import gTTS
import tempfile
import shutil
import re
# Language mapping for gTTS
LANGUAGE_MAP = {
"English": "en",
"Japanese": "ja",
"French": "fr",
"Spanish": "es",
"German": "de",
"Chinese": "zh",
"Italian": "it",
"Portuguese": "pt",
"Korean": "ko",
"Arabic": "ar"
}
def translate_text(api_key, text, target_language):
"""
Translates English text to the selected target language using OpenAI's API and provides pronunciation.
"""
# Validate input
if not api_key:
return "Error: API key is missing.", None
if not text:
return "Error: Input text is empty.", None
# Set the OpenAI API key
openai.api_key = api_key
# Define the messages for the chat model
messages_translation = [
{"role": "system", "content": "You are a helpful translator."},
{"role": "user", "content": f"Translate the following English text to {target_language}:\n\n{text}"}
]
try:
# Call the OpenAI API to get the translation
response_translation = openai.ChatCompletion.create(
model="gpt-4o", # Use the correct endpoint for chat models
messages=messages_translation,
max_tokens=300,
temperature=0.5
)
# Extract the translation from the response
translation = response_translation.choices[0].message['content'].strip()
# Define the messages for the pronunciation request (Romaji or other phonetic systems)
messages_pronunciation = [
{"role": "system", "content": "You are a helpful assistant who provides the pronunciation of the translated text."},
{"role": "user", "content": f"Provide the pronunciation for the following {target_language} text:\n\n{translation}"}
]
# Call the OpenAI API to get the pronunciation
response_pronunciation = openai.ChatCompletion.create(
model="gpt-4o",
messages=messages_pronunciation,
max_tokens=300,
temperature=0.5
)
# Extract the pronunciation from the response
pronunciation = response_pronunciation.choices[0].message['content'].strip()
return translation, pronunciation
except openai.error.OpenAIError as e:
return f"OpenAI API error: {str(e)}", None
except Exception as e:
return f"An unexpected error occurred: {str(e)}", None
# Function to clean pronunciation text
def clean_pronunciation(pronunciation_text):
# Remove introductory phrases like "Certainly! The pronunciation for the Arabic text..."
pronunciation_cleaned = re.sub(r"^(Certainly!|Sure!|The pronunciation for the .+? text.*?is[:]*\s*)", "", pronunciation_text).strip()
return pronunciation_cleaned
# Function to generate audio file from text using gTTS
def generate_audio_from_text(text, language_code):
tts = gTTS(text, lang=language_code) # Dynamically use the language code
# Save audio to a temporary file
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_audio_file.name)
return temp_audio_file.name
# Streamlit UI
st.title("Multi-language Translator with Pronunciation")
st.markdown("Translate English text into various languages and get its pronunciation.")
translateimg = Image.open("Untitled.png") # Ensure the file is in the correct directory
st.image(translateimg, use_container_width=True) # Adjust the size as per preference
# Access the API key from Hugging Face Secrets
api_key = os.getenv("OPENAI_API_KEY")
# Input field for the text
english_text = st.text_area("Enter the English text to translate")
# Dropdown menu for language selection
language_option = st.selectbox(
"Select Target Language",
["English", "Japanese", "French", "Spanish", "German", "Chinese", "Italian", "Portuguese", "Korean", "Arabic"]
)
# Button to trigger the translation
if st.button("Translate"):
if api_key and english_text:
# Initialize the progress bar
progress_bar = st.progress(0)
progress_text = st.empty() # To show the progress text
try:
# Step 1: Request translation
progress_text.text("Translating text...")
progress_bar.progress(33) # Update progress bar to 33%
# Translate text and get pronunciation
translated_text, pronunciation = translate_text(api_key, english_text, language_option)
# Step 2: Check if translation was successful
if pronunciation:
progress_text.text("Generating pronunciation...")
progress_bar.progress(66) # Update progress bar to 66%
# Clean pronunciation (remove unnecessary parts)
cleaned_pronunciation = clean_pronunciation(pronunciation)
st.markdown("### Translation Result:")
st.write(f"**Original English Text:** {english_text}")
st.write(f"**Translated Text ({language_option}):** {translated_text}")
st.write(f"**Pronunciation:** {cleaned_pronunciation}")
# Save the result in a text file
result_text = f"Original English Text: {english_text}\n\nTranslated Text ({language_option}): {translated_text}\nPronunciation: {cleaned_pronunciation}"
# Write to a text file
with open("translation_result.txt", "w") as file:
file.write(result_text)
# Create a download button for the user to download the file
with open("translation_result.txt", "rb") as file:
st.download_button(
label="Download Translation Result",
data=file,
file_name="translation_result.txt",
mime="text/plain"
)
# Step 3: Generate audio for pronunciation
progress_text.text("Generating pronunciation audio...")
progress_bar.progress(100) # Update progress bar to 100%
audio_file_path = generate_audio_from_text(cleaned_pronunciation, LANGUAGE_MAP[language_option])
# Provide a button to play the pronunciation audio
st.audio(audio_file_path, format="audio/mp3")
translateimg2 = Image.open("v3.png") # Ensure the file is in the correct directory
st.image(translateimg2, width=150) # Adjust the size as per preference
else:
st.error(translated_text) # Display error message if API call fails
except Exception as e:
st.error(f"An error occurred: {str(e)}")
else:
if not api_key:
st.error("API key is missing. Please add it as a secret in Hugging Face Settings.")
else:
st.error("Please provide text to translate.")