Spaces:
Running
Running
File size: 15,290 Bytes
d6f088e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import os
import gradio as gr
from groq import Groq
import json
from datetime import datetime
import time
class RealTimeFactChecker:
def __init__(self):
self.client = None
self.model_options = ["compound-beta", "compound-beta-mini"]
def initialize_client(self, api_key):
"""Initialize Groq client with API key"""
try:
self.client = Groq(api_key=api_key)
return True, "✅ API Key validated successfully!"
except Exception as e:
return False, f"❌ Error initializing client: {str(e)}"
def get_system_prompt(self):
"""Get the system prompt for consistent behavior"""
return """You are a Real-time Fact Checker and News Agent. Your primary role is to provide accurate, up-to-date information by leveraging web search when needed.
CORE RESPONSIBILITIES:
1. **Fact Verification**: Always verify claims with current, reliable sources
2. **Real-time Information**: Use web search for any information that changes frequently (news, stocks, weather, current events)
3. **Source Transparency**: When using web search, mention the sources or indicate that you've searched for current information
4. **Accuracy First**: If information is uncertain or conflicting, acknowledge this clearly
RESPONSE GUIDELINES:
- **Structure**: Start with a clear, direct answer, then provide supporting details
- **Recency**: Always prioritize the most recent, reliable information
- **Clarity**: Use clear, professional language while remaining accessible
- **Completeness**: Provide comprehensive answers but stay focused on the query
- **Source Awareness**: When you've searched for information, briefly indicate this (e.g., "Based on current reports..." or "Recent data shows...")
WHEN TO SEARCH:
- Breaking news or current events
- Stock prices, market data, or financial information
- Weather conditions or forecasts
- Recent scientific discoveries or research
- Current political developments
- Real-time statistics or data
- Verification of recent claims or rumors
RESPONSE FORMAT:
- Lead with key facts
- Include relevant context
- Mention timeframe when relevant (e.g., "as of today", "this week")
- If multiple sources conflict, acknowledge this
- End with a clear summary for complex topics
Remember: Your goal is to be the most reliable, up-to-date source of information possible."""
def query_compound_model(self, query, model, temperature=0.7):
"""Query the compound model and return response with tool execution info"""
if not self.client:
return "❌ Please set a valid API key first.", None, None
try:
start_time = time.time()
chat_completion = self.client.chat.completions.create(
messages=[
{
"role": "system",
"content": self.get_system_prompt()
},
{
"role": "user",
"content": query,
}
],
model=model,
temperature=temperature,
max_tokens=1000
)
end_time = time.time()
response_time = round(end_time - start_time, 2)
# Extract response
response_content = chat_completion.choices[0].message.content
# Check for executed tools
executed_tools = getattr(chat_completion.choices[0].message, 'executed_tools', None)
# Format tool execution info
tool_info = self.format_tool_info(executed_tools)
return response_content, tool_info, response_time
except Exception as e:
return f"❌ Error querying model: {str(e)}", None, None
def format_tool_info(self, executed_tools):
"""Format executed tools information for display"""
if not executed_tools:
return "🔍 **Tools Used:** None (Used existing knowledge)"
tool_info = "🔍 **Tools Used:**\n"
for i, tool in enumerate(executed_tools, 1):
tool_name = tool.get('name', 'Unknown')
tool_info += f"{i}. **{tool_name}**\n"
# Add tool parameters if available
if 'parameters' in tool:
params = tool['parameters']
if isinstance(params, dict):
for key, value in params.items():
tool_info += f" - {key}: {value}\n"
return tool_info
def get_example_queries(self):
"""Return categorized example queries"""
return {
"📰 Latest News": [
"What are the top 3 news stories today?",
"Latest developments in AI technology this week",
"Recent political events in the United States",
"Breaking news about climate change",
"What happened in the stock market today?"
],
"💰 Financial Data": [
"Current price of Bitcoin",
"Tesla stock price today",
"How is the S&P 500 performing today?",
"Latest cryptocurrency market trends",
"What's the current inflation rate?"
],
"🌤️ Weather Updates": [
"Current weather in New York City",
"Weather forecast for London this week",
"Is it going to rain in San Francisco today?",
"Temperature in Tokyo right now",
"Weather conditions in Sydney"
],
"🔬 Science & Technology": [
"Latest breakthroughs in fusion energy",
"Recent discoveries in space exploration",
"New developments in quantum computing",
"Latest medical research findings",
"Recent advances in renewable energy"
],
"🏆 Sports & Entertainment": [
"Latest football match results",
"Who won the recent tennis tournament?",
"Box office numbers for this weekend",
"Latest movie releases this month",
"Recent celebrity news"
],
"🔍 Fact Checking": [
"Is it true that the Earth's population reached 8 billion?",
"Verify: Did company X announce layoffs recently?",
"Check if the recent earthquake in Turkey was magnitude 7+",
"Confirm the latest unemployment rate statistics",
"Verify recent claims about electric vehicle sales"
]
}
def create_interface():
fact_checker = RealTimeFactChecker()
def validate_api_key(api_key):
if not api_key or api_key.strip() == "":
return "❌ Please enter a valid API key", False
success, message = fact_checker.initialize_client(api_key.strip())
return message, success
def process_query(query, model, temperature, api_key, system_prompt):
if not api_key or api_key.strip() == "":
return "❌ Please set your API key first", "", ""
if not query or query.strip() == "":
return "❌ Please enter a query", "", ""
# Initialize client if not already done
if not fact_checker.client:
success, message = fact_checker.initialize_client(api_key.strip())
if not success:
return message, "", ""
# Use custom system prompt if provided
if system_prompt and system_prompt.strip():
original_prompt = fact_checker.get_system_prompt
fact_checker.get_system_prompt = lambda: system_prompt.strip()
response, tool_info, response_time = fact_checker.query_compound_model(
query.strip(), model, temperature
)
# Restore original system prompt function
if system_prompt and system_prompt.strip():
fact_checker.get_system_prompt = original_prompt
# Format response with timestamp
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
formatted_response = f"**Query:** {query}\n\n**Response:**\n{response}\n\n---\n*Generated at {timestamp} in {response_time}s*"
return formatted_response, tool_info or "", f"⚡ Response time: {response_time}s"
def reset_system_prompt():
return fact_checker.get_system_prompt()
def load_example(example_text):
return example_text
# Create the Gradio interface
with gr.Blocks(title="Real-time Fact Checker & News Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🔍 Real-time Fact Checker & News Agent
**Powered by Groq's Compound Models with Built-in Web Search**
This application provides real-time information by automatically searching the web when needed.
Enter your query below and get up-to-the-minute facts, news, and data!
""")
with gr.Row():
with gr.Column(scale=2):
# API Key section
with gr.Group():
gr.Markdown("### 🔑 API Configuration")
api_key_input = gr.Textbox(
label="Groq API Key",
placeholder="Enter your Groq API key here...",
type="password",
info="Get your free API key from https://console.groq.com/"
)
api_status = gr.Textbox(
label="Status",
value="⚠️ Please enter your API key",
interactive=False
)
validate_btn = gr.Button("Validate API Key", variant="secondary")
# Advanced options
with gr.Group():
gr.Markdown("### ⚙️ Advanced Options")
with gr.Accordion("System Prompt (Click to customize)", open=False):
system_prompt_input = gr.Textbox(
label="System Prompt",
value=fact_checker.get_system_prompt(),
lines=8,
info="Customize how the AI behaves and responds"
)
reset_prompt_btn = gr.Button("Reset to Default", variant="secondary", size="sm")
# Query section
with gr.Group():
gr.Markdown("### 💭 Your Query")
query_input = gr.Textbox(
label="Ask anything that requires real-time information",
placeholder="e.g., What are the latest AI developments today?",
lines=3
)
with gr.Row():
model_choice = gr.Dropdown(
choices=fact_checker.model_options,
value="compound-beta",
label="Model",
info="compound-beta: More capable | compound-beta-mini: Faster"
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher = more creative, Lower = more focused"
)
submit_btn = gr.Button("🔍 Get Real-time Information", variant="primary", size="lg")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=1):
# Example queries
with gr.Group():
gr.Markdown("### 📝 Example Queries")
gr.Markdown("Click any example to load it:")
examples = fact_checker.get_example_queries()
for category, queries in examples.items():
gr.Markdown(f"**{category}**")
for query in queries:
example_btn = gr.Button(query, variant="secondary", size="sm")
example_btn.click(
fn=load_example,
inputs=[gr.State(query)],
outputs=[query_input]
)
# Results section
gr.Markdown("### 📊 Results")
with gr.Row():
with gr.Column(scale=2):
response_output = gr.Markdown(
label="Response",
value="*Your response will appear here...*"
)
with gr.Column(scale=1):
tool_info_output = gr.Markdown(
label="Tool Execution Info",
value="*Tool execution details will appear here...*"
)
performance_output = gr.Textbox(
label="Performance",
value="",
interactive=False
)
# Event handlers
validate_btn.click(
fn=validate_api_key,
inputs=[api_key_input],
outputs=[api_status, gr.State()]
)
reset_prompt_btn.click(
fn=reset_system_prompt,
outputs=[system_prompt_input]
)
submit_btn.click(
fn=process_query,
inputs=[query_input, model_choice, temperature, api_key_input, system_prompt_input],
outputs=[response_output, tool_info_output, performance_output]
)
clear_btn.click(
fn=lambda: ("", "*Your response will appear here...*", "*Tool execution details will appear here...*", ""),
outputs=[query_input, response_output, tool_info_output, performance_output]
)
# Footer
gr.Markdown("""
---
### 🔗 Useful Links
- [Groq Console](https://console.groq.com/) - Get your free API key
- [Groq Documentation](https://console.groq.com/docs/quickstart) - Learn more about Groq models
- [Compound Models Info](https://console.groq.com/docs/models) - Details about compound models
### 💡 Tips
- The compound models automatically use web search when real-time information is needed
- Try different temperature settings: 0.1 for factual queries, 0.7-0.9 for creative questions
- compound-beta is more capable but slower, compound-beta-mini is faster but less capable
""")
return demo
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True
) |