File size: 15,290 Bytes
d6f088e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
import gradio as gr
from groq import Groq
import json
from datetime import datetime
import time

class RealTimeFactChecker:
    def __init__(self):
        self.client = None
        self.model_options = ["compound-beta", "compound-beta-mini"]
        
    def initialize_client(self, api_key):
        """Initialize Groq client with API key"""
        try:
            self.client = Groq(api_key=api_key)
            return True, "✅ API Key validated successfully!"
        except Exception as e:
            return False, f"❌ Error initializing client: {str(e)}"
    
    def get_system_prompt(self):
        """Get the system prompt for consistent behavior"""
        return """You are a Real-time Fact Checker and News Agent. Your primary role is to provide accurate, up-to-date information by leveraging web search when needed.

CORE RESPONSIBILITIES:
1. **Fact Verification**: Always verify claims with current, reliable sources
2. **Real-time Information**: Use web search for any information that changes frequently (news, stocks, weather, current events)
3. **Source Transparency**: When using web search, mention the sources or indicate that you've searched for current information
4. **Accuracy First**: If information is uncertain or conflicting, acknowledge this clearly

RESPONSE GUIDELINES:
- **Structure**: Start with a clear, direct answer, then provide supporting details
- **Recency**: Always prioritize the most recent, reliable information
- **Clarity**: Use clear, professional language while remaining accessible
- **Completeness**: Provide comprehensive answers but stay focused on the query
- **Source Awareness**: When you've searched for information, briefly indicate this (e.g., "Based on current reports..." or "Recent data shows...")

WHEN TO SEARCH:
- Breaking news or current events
- Stock prices, market data, or financial information
- Weather conditions or forecasts
- Recent scientific discoveries or research
- Current political developments
- Real-time statistics or data
- Verification of recent claims or rumors

RESPONSE FORMAT:
- Lead with key facts
- Include relevant context
- Mention timeframe when relevant (e.g., "as of today", "this week")
- If multiple sources conflict, acknowledge this
- End with a clear summary for complex topics

Remember: Your goal is to be the most reliable, up-to-date source of information possible."""

    def query_compound_model(self, query, model, temperature=0.7):
        """Query the compound model and return response with tool execution info"""
        if not self.client:
            return "❌ Please set a valid API key first.", None, None
        
        try:
            start_time = time.time()
            
            chat_completion = self.client.chat.completions.create(
                messages=[
                    {
                        "role": "system",
                        "content": self.get_system_prompt()
                    },
                    {
                        "role": "user",
                        "content": query,
                    }
                ],
                model=model,
                temperature=temperature,
                max_tokens=1000
            )
            
            end_time = time.time()
            response_time = round(end_time - start_time, 2)
            
            # Extract response
            response_content = chat_completion.choices[0].message.content
            
            # Check for executed tools
            executed_tools = getattr(chat_completion.choices[0].message, 'executed_tools', None)
            
            # Format tool execution info
            tool_info = self.format_tool_info(executed_tools)
            
            return response_content, tool_info, response_time
            
        except Exception as e:
            return f"❌ Error querying model: {str(e)}", None, None
    
    def format_tool_info(self, executed_tools):
        """Format executed tools information for display"""
        if not executed_tools:
            return "🔍 **Tools Used:** None (Used existing knowledge)"
        
        tool_info = "🔍 **Tools Used:**\n"
        for i, tool in enumerate(executed_tools, 1):
            tool_name = tool.get('name', 'Unknown')
            tool_info += f"{i}. **{tool_name}**\n"
            
            # Add tool parameters if available
            if 'parameters' in tool:
                params = tool['parameters']
                if isinstance(params, dict):
                    for key, value in params.items():
                        tool_info += f"   - {key}: {value}\n"
        
        return tool_info
    
    def get_example_queries(self):
        """Return categorized example queries"""
        return {
            "📰 Latest News": [
                "What are the top 3 news stories today?",
                "Latest developments in AI technology this week",
                "Recent political events in the United States",
                "Breaking news about climate change",
                "What happened in the stock market today?"
            ],
            "💰 Financial Data": [
                "Current price of Bitcoin",
                "Tesla stock price today",
                "How is the S&P 500 performing today?",
                "Latest cryptocurrency market trends",
                "What's the current inflation rate?"
            ],
            "🌤️ Weather Updates": [
                "Current weather in New York City",
                "Weather forecast for London this week",
                "Is it going to rain in San Francisco today?",
                "Temperature in Tokyo right now",
                "Weather conditions in Sydney"
            ],
            "🔬 Science & Technology": [
                "Latest breakthroughs in fusion energy",
                "Recent discoveries in space exploration",
                "New developments in quantum computing",
                "Latest medical research findings",
                "Recent advances in renewable energy"
            ],
            "🏆 Sports & Entertainment": [
                "Latest football match results",
                "Who won the recent tennis tournament?",
                "Box office numbers for this weekend",
                "Latest movie releases this month",
                "Recent celebrity news"
            ],
            "🔍 Fact Checking": [
                "Is it true that the Earth's population reached 8 billion?",
                "Verify: Did company X announce layoffs recently?",
                "Check if the recent earthquake in Turkey was magnitude 7+",
                "Confirm the latest unemployment rate statistics",
                "Verify recent claims about electric vehicle sales"
            ]
        }

def create_interface():
    fact_checker = RealTimeFactChecker()
    
    def validate_api_key(api_key):
        if not api_key or api_key.strip() == "":
            return "❌ Please enter a valid API key", False
        
        success, message = fact_checker.initialize_client(api_key.strip())
        return message, success
    
    def process_query(query, model, temperature, api_key, system_prompt):
        if not api_key or api_key.strip() == "":
            return "❌ Please set your API key first", "", ""
        
        if not query or query.strip() == "":
            return "❌ Please enter a query", "", ""
        
        # Initialize client if not already done
        if not fact_checker.client:
            success, message = fact_checker.initialize_client(api_key.strip())
            if not success:
                return message, "", ""
        
        # Use custom system prompt if provided
        if system_prompt and system_prompt.strip():
            original_prompt = fact_checker.get_system_prompt
            fact_checker.get_system_prompt = lambda: system_prompt.strip()
        
        response, tool_info, response_time = fact_checker.query_compound_model(
            query.strip(), model, temperature
        )
        
        # Restore original system prompt function
        if system_prompt and system_prompt.strip():
            fact_checker.get_system_prompt = original_prompt
        
        # Format response with timestamp
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        formatted_response = f"**Query:** {query}\n\n**Response:**\n{response}\n\n---\n*Generated at {timestamp} in {response_time}s*"
        
        return formatted_response, tool_info or "", f"⚡ Response time: {response_time}s"
    
    def reset_system_prompt():
        return fact_checker.get_system_prompt()
    
    def load_example(example_text):
        return example_text
    
    # Create the Gradio interface
    with gr.Blocks(title="Real-time Fact Checker & News Agent", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # 🔍 Real-time Fact Checker & News Agent
        
        **Powered by Groq's Compound Models with Built-in Web Search**
        
        This application provides real-time information by automatically searching the web when needed. 
        Enter your query below and get up-to-the-minute facts, news, and data!
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                # API Key section
                with gr.Group():
                    gr.Markdown("### 🔑 API Configuration")
                    api_key_input = gr.Textbox(
                        label="Groq API Key",
                        placeholder="Enter your Groq API key here...",
                        type="password",
                        info="Get your free API key from https://console.groq.com/"
                    )
                    api_status = gr.Textbox(
                        label="Status",
                        value="⚠️ Please enter your API key",
                        interactive=False
                    )
                    validate_btn = gr.Button("Validate API Key", variant="secondary")
                
                # Advanced options
                with gr.Group():
                    gr.Markdown("### ⚙️ Advanced Options")
                    with gr.Accordion("System Prompt (Click to customize)", open=False):
                        system_prompt_input = gr.Textbox(
                            label="System Prompt",
                            value=fact_checker.get_system_prompt(),
                            lines=8,
                            info="Customize how the AI behaves and responds"
                        )
                        reset_prompt_btn = gr.Button("Reset to Default", variant="secondary", size="sm")

                # Query section
                with gr.Group():
                    gr.Markdown("### 💭 Your Query")
                    query_input = gr.Textbox(
                        label="Ask anything that requires real-time information",
                        placeholder="e.g., What are the latest AI developments today?",
                        lines=3
                    )
                    
                    with gr.Row():
                        model_choice = gr.Dropdown(
                            choices=fact_checker.model_options,
                            value="compound-beta",
                            label="Model",
                            info="compound-beta: More capable | compound-beta-mini: Faster"
                        )
                        temperature = gr.Slider(
                            minimum=0.0,
                            maximum=1.0,
                            value=0.7,
                            step=0.1,
                            label="Temperature",
                            info="Higher = more creative, Lower = more focused"
                        )
                    
                    submit_btn = gr.Button("🔍 Get Real-time Information", variant="primary", size="lg")
                    clear_btn = gr.Button("Clear", variant="secondary")
            
            with gr.Column(scale=1):
                # Example queries
                with gr.Group():
                    gr.Markdown("### 📝 Example Queries")
                    gr.Markdown("Click any example to load it:")
                    
                    examples = fact_checker.get_example_queries()
                    for category, queries in examples.items():
                        gr.Markdown(f"**{category}**")
                        for query in queries:
                            example_btn = gr.Button(query, variant="secondary", size="sm")
                            example_btn.click(
                                fn=load_example,
                                inputs=[gr.State(query)],
                                outputs=[query_input]
                            )
        
        # Results section
        gr.Markdown("### 📊 Results")
        
        with gr.Row():
            with gr.Column(scale=2):
                response_output = gr.Markdown(
                    label="Response",
                    value="*Your response will appear here...*"
                )
            
            with gr.Column(scale=1):
                tool_info_output = gr.Markdown(
                    label="Tool Execution Info",
                    value="*Tool execution details will appear here...*"
                )
                
                performance_output = gr.Textbox(
                    label="Performance",
                    value="",
                    interactive=False
                )
        
        # Event handlers
        validate_btn.click(
            fn=validate_api_key,
            inputs=[api_key_input],
            outputs=[api_status, gr.State()]
        )
        
        reset_prompt_btn.click(
            fn=reset_system_prompt,
            outputs=[system_prompt_input]
        )
        
        submit_btn.click(
            fn=process_query,
            inputs=[query_input, model_choice, temperature, api_key_input, system_prompt_input],
            outputs=[response_output, tool_info_output, performance_output]
        )
        
        clear_btn.click(
            fn=lambda: ("", "*Your response will appear here...*", "*Tool execution details will appear here...*", ""),
            outputs=[query_input, response_output, tool_info_output, performance_output]
        )
        
        # Footer
        gr.Markdown("""
        ---
        ### 🔗 Useful Links
        - [Groq Console](https://console.groq.com/) - Get your free API key
        - [Groq Documentation](https://console.groq.com/docs/quickstart) - Learn more about Groq models
        - [Compound Models Info](https://console.groq.com/docs/models) - Details about compound models
        
        ### 💡 Tips
        - The compound models automatically use web search when real-time information is needed
        - Try different temperature settings: 0.1 for factual queries, 0.7-0.9 for creative questions
        - compound-beta is more capable but slower, compound-beta-mini is faster but less capable
        """)
    
    return demo

# Launch the application
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        share=True
    )