FactPulse / app.py
shukdevdatta123's picture
Update app.py
6eb068d verified
raw
history blame
18.5 kB
import os
import gradio as gr
from groq import Groq
import json
from datetime import datetime
import time
class RealTimeFactChecker:
def __init__(self):
self.client = None
self.model_options = ["compound-beta", "compound-beta-mini"]
def initialize_client(self, api_key):
"""Initialize Groq client with API key"""
try:
self.client = Groq(api_key=api_key)
return True, "<div class='status-success'>✅ API Key validated successfully!</div>"
except Exception as e:
return False, f"<div class='status-error'>❌ Error initializing client: {str(e)}</div>"
def get_system_prompt(self):
"""Get the system prompt for consistent behavior"""
return """You are a Real-time Fact Checker and News Agent. Your primary role is to provide accurate, up-to-date information by leveraging web search when needed.
CORE RESPONSIBILITIES:
1. **Fact Verification**: Always verify claims with current, reliable sources
2. **Real-time Information**: Use web search for any information that changes frequently (news, stocks, weather, current events)
3. **Source Transparency**: When using web search, mention the sources or indicate that you've searched for current information
4. **Accuracy First**: If information is uncertain or conflicting, acknowledge this clearly
RESPONSE GUIDELINES:
- **Structure**: Start with a clear, direct answer, then provide supporting details
- **Recency**: Always prioritize the most recent, reliable information
- **Clarity**: Use clear, professional language while remaining accessible
- **Completeness**: Provide comprehensive answers but stay focused on the query
- **Source Awareness**: When you've searched for information, briefly indicate this (e.g., "Based on current reports..." or "Recent data shows...")
WHEN TO SEARCH:
- Breaking news or current events
- Stock prices, market data, or financial information
- Weather conditions or forecasts
- Recent scientific discoveries or research
- Current political developments
- Real-time statistics or data
- Verification of recent claims or rumors
RESPONSE FORMAT:
- Lead with key facts
- Include relevant context
- Mention timeframe when relevant (e.g., "as of today", "this week")
- If multiple sources conflict, acknowledge this
- End with a clear summary for complex topics
Remember: Your goal is to be the most reliable, up-to-date source of information possible."""
def query_compound_model(self, query, model, temperature=0.7, custom_system_prompt=None):
"""Query the compound model and return response with tool execution info"""
if not self.client:
return "<div class='status-error'>❌ Please set a valid API key first.</div>", None, None
try:
start_time = time.time()
system_prompt = custom_system_prompt if custom_system_prompt else self.get_system_prompt()
chat_completion = self.client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": query}
],
model=model,
temperature=temperature,
max_tokens=1500
)
end_time = time.time()
response_time = round(end_time - start_time, 2)
response_content = chat_completion.choices[0].message.content
executed_tools = getattr(chat_completion.choices[0].message, 'executed_tools', None)
tool_info = self.format_tool_info(executed_tools)
return response_content, tool_info, response_time
except Exception as e:
return f"<div class='status-error'>❌ Error querying model: {str(e)}</div>", None, None
def format_tool_info(self, executed_tools):
"""Format executed tools information as HTML"""
if not executed_tools:
return "<div class='tool-info'>🔍 <strong>Tools Used:</strong> None (Used existing knowledge)</div>"
tool_html = "<div class='tool-info'>🔍 <strong>Tools Used:</strong><ul>"
for i, tool in enumerate(executed_tools, 1):
try:
if hasattr(tool, 'name'):
tool_name = tool.name
elif hasattr(tool, 'tool_name'):
tool_name = tool.tool_name
elif isinstance(tool, dict):
tool_name = tool.get('name', 'Unknown')
else:
tool_name = str(tool)
tool_html += f"<li>{i}. <strong>{tool_name}</strong>"
if hasattr(tool, 'parameters'):
params = tool.parameters
if isinstance(params, dict):
tool_html += "<ul>"
for key, value in params.items():
tool_html += f"<li>{key}: {value}</li>"
tool_html += "</ul>"
elif hasattr(tool, 'input'):
tool_html += f"<ul><li>Input: {tool.input}</li></ul>"
tool_html += "</li>"
except Exception:
tool_html += f"<li>{i}. <strong>Tool {i}</strong> (Error parsing details)</li>"
tool_html += "</ul></div>"
return tool_html
def get_example_queries(self):
"""Return categorized example queries"""
return {
"📰 Latest News": [
"What are the top 3 news stories today?",
"Latest developments in AI technology this week",
"Recent political events in the United States",
"Breaking news about climate change",
"What happened in the stock market today?"
],
"💰 Financial Data": [
"Current price of Bitcoin",
"Tesla stock price today",
"How is the S&P 500 performing today?",
"Latest cryptocurrency market trends",
"What's the current inflation rate?"
],
"🌤️ Weather Updates": [
"Current weather in New York City",
"Weather forecast for London this week",
"Is it going to rain in San Francisco today?",
"Temperature in Tokyo right now",
"Weather conditions in Sydney"
],
"🔬 Science & Technology": [
"Latest breakthroughs in fusion energy",
"Recent discoveries in space exploration",
"New developments in quantum computing",
"Latest medical research findings",
"Recent advances in renewable energy"
],
"🏆 Sports & Entertainment": [
"Latest football match results",
"Who won the recent tennis tournament?",
"Box office numbers for this weekend",
"Latest movie releases this month",
"Recent celebrity news"
],
"🔍 Fact Checking": [
"Is it true that the Earth's population reached 8 billion?",
"Verify: Did company X announce layoffs recently?",
"Check if the recent earthquake in Turkey was magnitude 7+",
"Confirm the latest unemployment rate statistics",
"Verify recent claims about electric vehicle sales"
]
}
def get_custom_prompt_examples(self):
"""Return custom system prompt examples"""
return {
"🎯 Fact-Checker": "You are a fact-checker. Always verify claims with multiple sources and clearly indicate confidence levels in your assessments.",
"📊 News Analyst": "You are a news analyst. Focus on providing balanced, unbiased reporting with multiple perspectives on current events.",
"💼 Financial Advisor": "You are a financial advisor. Provide accurate market data with context about trends and implications for investors.",
"🔬 Research Assistant": "You are a research assistant specializing in scientific and technical information. Provide detailed, evidence-based responses.",
"🌍 Global News Correspondent": "You are a global news correspondent. Focus on international events and their interconnections.",
"📈 Market Analyst": "You are a market analyst. Provide detailed financial analysis including technical indicators and market sentiment."
}
def create_interface():
fact_checker = RealTimeFactChecker()
custom_css = """
<style>
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 20px;
min-height: 100vh;
font-family: 'Segoe UI', sans-serif;
color: #333;
}
h1, h2, h3, h4 {
color: white;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
.feature-card {
background: white;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
transition: transform 0.3s ease;
}
.feature-card:hover {
transform: translateY(-5px);
}
.example-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 10px;
}
.status-success {
background: #48bb78;
color: white;
padding: 10px;
border-radius: 5px;
}
.status-warning {
background: #ed8936;
color: white;
padding: 10px;
border-radius: 5px;
}
.status-error {
background: #f56565;
color: white;
padding: 10px;
border-radius: 5px;
}
.results-section {
background: white;
border-radius: 10px;
padding: 20px;
margin-top: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.response-content {
background: #f8f9fa;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
}
.response-content h3 {
color: #2d3748;
margin-bottom: 10px;
}
.response-content p {
line-height: 1.6;
color: #4a5568;
}
.timestamp {
font-size: 0.9rem;
color: #718096;
margin-top: 10px;
}
.tool-info {
background: #edf2f7;
padding: 15px;
border-radius: 8px;
color: #2d3748;
}
.tool-info ul {
list-style-type: none;
padding-left: 0;
}
.tool-info li {
margin-bottom: 8px;
}
.performance-badge {
background: #48bb78;
color: white;
padding: 5px 10px;
border-radius: 15px;
font-weight: bold;
display: inline-block;
}
.footer-section {
background: #2d3748;
color: white;
padding: 20px;
border-radius: 10px;
margin-top: 20px;
text-align: center;
}
.footer-section a {
color: #63b3ed;
text-decoration: none;
}
.footer-section a:hover {
text-decoration: underline;
}
@media (max-width: 768px) {
.gradio-row {
flex-direction: column;
}
}
</style>
"""
def validate_api_key(api_key):
if not api_key or api_key.strip() == "":
return "<div class='status-error'>❌ Please enter a valid API key</div>", False
success, message = fact_checker.initialize_client(api_key.strip())
return message, success
def process_query(query, model, temperature, api_key, system_prompt):
if not api_key or api_key.strip() == "":
return "<div class='status-error'>❌ Please set your API key first</div>", "", ""
if not query or query.strip() == "":
return "<div class='status-error'>❌ Please enter a query</div>", "", ""
if not fact_checker.client:
success, message = fact_checker.initialize_client(api_key.strip())
if not success:
return message, "", ""
response, tool_info, response_time = fact_checker.query_compound_model(
query.strip(), model, temperature, system_prompt.strip() if system_prompt else None
)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
formatted_response = f"""
<div class='response-content'>
<h3>Query: {query}</h3>
<p>{response}</p>
<p class='timestamp'>Generated at {timestamp} in {response_time}s</p>
</div>
"""
performance_html = f"<span class='performance-badge'>⚡ Response time: {response_time}s</span>"
return formatted_response, tool_info or "", performance_html
def reset_system_prompt():
return fact_checker.get_system_prompt()
def load_example(example_text):
return example_text
def load_custom_prompt(prompt_text):
return prompt_text
with gr.Blocks(title="Real-time Fact Checker & News Agent", css=custom_css) as demo:
gr.HTML("""
<div style='text-align: center; padding: 20px;'>
<h1>🔍 Real-time Fact Checker & News Agent</h1>
<p style='color: white;'>Powered by Groq's Compound Models with Built-in Web Search</p>
</div>
""")
with gr.Row(elem_classes="gradio-row"):
with gr.Column(scale=2):
with gr.Group():
gr.HTML('<div class="feature-card">')
gr.Markdown("### 🔑 API Configuration")
api_key_input = gr.Textbox(
label="Groq API Key",
placeholder="Enter your Groq API key here...",
type="password"
)
api_status = gr.HTML(
label="Status",
value="<div class='status-warning'>⚠️ Please enter your API key</div>"
)
validate_btn = gr.Button("Validate API Key", variant="secondary")
gr.HTML('</div>')
with gr.Group():
gr.HTML('<div class="feature-card">')
gr.Markdown("### 💭 Your Query")
query_input = gr.Textbox(
label="Ask anything that requires real-time information",
placeholder="e.g., What are the latest AI developments today?",
lines=4
)
with gr.Row():
model_choice = gr.Dropdown(
choices=fact_checker.model_options,
value="compound-beta",
label="Model"
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature"
)
submit_btn = gr.Button("🔍 Get Real-time Information", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
gr.HTML('</div>')
with gr.Column(scale=1):
with gr.Group():
gr.HTML('<div class="feature-card">')
gr.Markdown("### 📝 Example Queries")
examples = fact_checker.get_example_queries()
for category, queries in examples.items():
with gr.Accordion(category, open=False):
for query in queries:
gr.Button(query, variant="secondary").click(
fn=lambda q=query: q,
outputs=[query_input]
)
gr.HTML('</div>')
gr.HTML('<div class="results-section">')
gr.Markdown("### 📊 Results")
with gr.Row():
with gr.Column(scale=2):
response_output = gr.HTML(
label="Response",
value="<div class='response-content'><p>Your response will appear here...</p></div>"
)
with gr.Column(scale=1):
tool_info_output = gr.HTML(
label="Tool Execution Info",
value="<div class='tool-info'>Tool execution details will appear here...</div>"
)
performance_output = gr.HTML(
label="Performance",
value=""
)
gr.HTML('</div>')
gr.HTML("""
<div class="footer-section">
<h3>🔗 Useful Links</h3>
<p>
<a href="https://console.groq.com/" target="_blank">Groq Console</a> |
<a href="https://console.groq.com/docs/quickstart" target="_blank">Docs</a> |
<a href="https://console.groq.com/docs/models" target="_blank">Models</a>
</p>
<h3>💡 Tips</h3>
<p>Use custom prompts to specialize the AI. Check tool info for web search usage.</p>
</div>
""")
validate_btn.click(
fn=validate_api_key,
inputs=[api_key_input],
outputs=[api_status, gr.State()]
)
submit_btn.click(
fn=process_query,
inputs=[query_input, model_choice, temperature, api_key_input, gr.State()],
outputs=[response_output, tool_info_output, performance_output]
)
clear_btn.click(
fn=lambda: ("", "<div class='response-content'><p>Your response will appear here...</p></div>",
"<div class='tool-info'>Tool execution details will appear here...</div>", ""),
outputs=[query_input, response_output, tool_info_output, performance_output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True)