Spaces:
Running
Running
import os | |
import gradio as gr | |
from groq import Groq | |
import json | |
from datetime import datetime | |
import time | |
class RealTimeFactChecker: | |
def __init__(self): | |
self.client = None | |
self.model_options = ["compound-beta", "compound-beta-mini"] | |
def initialize_client(self, api_key): | |
"""Initialize Groq client with API key""" | |
try: | |
self.client = Groq(api_key=api_key) | |
return True, "✅ API Key validated successfully!" | |
except Exception as e: | |
return False, f"❌ Error initializing client: {str(e)}" | |
def get_system_prompt(self): | |
"""Get the system prompt for consistent behavior""" | |
return """You are a Real-time Fact Checker and News Agent. Your primary role is to provide accurate, up-to-date information by leveraging web search when needed. | |
CORE RESPONSIBILITIES: | |
1. **Fact Verification**: Always verify claims with current, reliable sources | |
2. **Real-time Information**: Use web search for any information that changes frequently (news, stocks, weather, current events) | |
3. **Source Transparency**: When using web search, mention the sources or indicate that you've searched for current information | |
4. **Accuracy First**: If information is uncertain or conflicting, acknowledge this clearly | |
RESPONSE GUIDELINES: | |
- **Structure**: Start with a clear, direct answer, then provide supporting details | |
- **Recency**: Always prioritize the most recent, reliable information | |
- **Clarity**: Use clear, professional language while remaining accessible | |
- **Completeness**: Provide comprehensive answers but stay focused on the query | |
- **Source Awareness**: When you've searched for information, briefly indicate this (e.g., "Based on current reports..." or "Recent data shows...") | |
WHEN TO SEARCH: | |
- Breaking news or current events | |
- Stock prices, market data, or financial information | |
- Weather conditions or forecasts | |
- Recent scientific discoveries or research | |
- Current political developments | |
- Real-time statistics or data | |
- Verification of recent claims or rumors | |
RESPONSE FORMAT: | |
- Lead with key facts | |
- Include relevant context | |
- Mention timeframe when relevant (e.g., "as of today", "this week") | |
- If multiple sources conflict, acknowledge this | |
- End with a clear summary for complex topics | |
Remember: Your goal is to be the most reliable, up-to-date source of information possible.""" | |
def query_compound_model(self, query, model, temperature=0.7, custom_system_prompt=None): | |
"""Query the compound model and return response with tool execution info""" | |
if not self.client: | |
return "❌ Please set a valid API key first.", None, None | |
try: | |
start_time = time.time() | |
# Use custom system prompt if provided | |
system_prompt = custom_system_prompt if custom_system_prompt else self.get_system_prompt() | |
chat_completion = self.client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "system", | |
"content": system_prompt | |
}, | |
{ | |
"role": "user", | |
"content": query, | |
} | |
], | |
model=model, | |
temperature=temperature, | |
max_tokens=1500 | |
) | |
end_time = time.time() | |
response_time = round(end_time - start_time, 2) | |
# Extract response | |
response_content = chat_completion.choices[0].message.content | |
# Check for executed tools - Fixed the error here | |
executed_tools = getattr(chat_completion.choices[0].message, 'executed_tools', None) | |
# Format tool execution info | |
tool_info = self.format_tool_info(executed_tools) | |
return response_content, tool_info, response_time | |
except Exception as e: | |
return f"❌ Error querying model: {str(e)}", None, None | |
def format_tool_info(self, executed_tools): | |
"""Format executed tools information for display - FIXED""" | |
if not executed_tools: | |
return "🔍 **Tools Used:** None (Used existing knowledge)" | |
tool_info = "🔍 **Tools Used:**\n" | |
for i, tool in enumerate(executed_tools, 1): | |
try: | |
# Handle different tool object types | |
if hasattr(tool, 'name'): | |
tool_name = tool.name | |
elif hasattr(tool, 'tool_name'): | |
tool_name = tool.tool_name | |
elif isinstance(tool, dict): | |
tool_name = tool.get('name', 'Unknown') | |
else: | |
tool_name = str(tool) | |
tool_info += f"{i}. **{tool_name}**\n" | |
# Add tool parameters if available | |
if hasattr(tool, 'parameters'): | |
params = tool.parameters | |
if isinstance(params, dict): | |
for key, value in params.items(): | |
tool_info += f" - {key}: {value}\n" | |
elif hasattr(tool, 'input'): | |
tool_info += f" - Input: {tool.input}\n" | |
except Exception as e: | |
tool_info += f"{i}. **Tool {i}** (Error parsing details)\n" | |
return tool_info | |
def get_example_queries(self): | |
"""Return categorized example queries""" | |
return { | |
"📰 Latest News": [ | |
"What are the top 3 news stories today?", | |
"Latest developments in AI technology this week", | |
"Recent political events in the United States", | |
"Breaking news about climate change", | |
"What happened in the stock market today?" | |
], | |
"💰 Financial Data": [ | |
"Current price of Bitcoin", | |
"Tesla stock price today", | |
"How is the S&P 500 performing today?", | |
"Latest cryptocurrency market trends", | |
"What's the current inflation rate?" | |
], | |
"🌤️ Weather Updates": [ | |
"Current weather in New York City", | |
"Weather forecast for London this week", | |
"Is it going to rain in San Francisco today?", | |
"Temperature in Tokyo right now", | |
"Weather conditions in Sydney" | |
], | |
"🔬 Science & Technology": [ | |
"Latest breakthroughs in fusion energy", | |
"Recent discoveries in space exploration", | |
"New developments in quantum computing", | |
"Latest medical research findings", | |
"Recent advances in renewable energy" | |
], | |
"🏆 Sports & Entertainment": [ | |
"Latest football match results", | |
"Who won the recent tennis tournament?", | |
"Box office numbers for this weekend", | |
"Latest movie releases this month", | |
"Recent celebrity news" | |
], | |
"🔍 Fact Checking": [ | |
"Is it true that the Earth's population reached 8 billion?", | |
"Verify: Did company X announce layoffs recently?", | |
"Check if the recent earthquake in Turkey was magnitude 7+", | |
"Confirm the latest unemployment rate statistics", | |
"Verify recent claims about electric vehicle sales" | |
] | |
} | |
def get_custom_prompt_examples(self): | |
"""Return custom system prompt examples""" | |
return { | |
"🎯 Fact-Checker": "You are a fact-checker. Always verify claims with multiple sources and clearly indicate confidence levels in your assessments. Use phrases like 'highly confident', 'moderately confident', or 'requires verification' when presenting information.", | |
"📊 News Analyst": "You are a news analyst. Focus on providing balanced, unbiased reporting with multiple perspectives on current events. Always present different viewpoints and avoid partisan language.", | |
"💼 Financial Advisor": "You are a financial advisor. Provide accurate market data with context about trends and implications for investors. Always include disclaimers about market risks and the importance of professional financial advice.", | |
"🔬 Research Assistant": "You are a research assistant specializing in scientific and technical information. Provide detailed, evidence-based responses with proper context about methodology and limitations of studies.", | |
"🌍 Global News Correspondent": "You are a global news correspondent. Focus on international events and their interconnections. Provide cultural context and explain how events in one region might affect others.", | |
"📈 Market Analyst": "You are a market analyst. Provide detailed financial analysis including technical indicators, market sentiment, and economic factors affecting price movements." | |
} | |
def create_interface(): | |
fact_checker = RealTimeFactChecker() | |
# Custom CSS for beautiful styling | |
custom_css = """ | |
<style> | |
.gradio-container { | |
max-width: 1400px !important; | |
margin: 0 auto; | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
min-height: 100vh; | |
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; | |
} | |
.main-header { | |
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%); | |
color: white; | |
padding: 30px; | |
border-radius: 20px; | |
margin-bottom: 30px; | |
text-align: center; | |
box-shadow: 0 10px 30px rgba(0,0,0,0.3); | |
} | |
.main-header h1 { | |
font-size: 2.5rem; | |
margin: 0; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.3); | |
} | |
.main-header p { | |
font-size: 1.2rem; | |
margin: 10px 0 0 0; | |
opacity: 0.9; | |
} | |
.feature-card { | |
background: white; | |
border-radius: 15px; | |
padding: 25px; | |
margin: 20px 0; | |
box-shadow: 0 8px 25px rgba(0,0,0,0.1); | |
border: 1px solid #e1e8ed; | |
transition: transform 0.3s ease, box-shadow 0.3s ease; | |
} | |
.feature-card:hover { | |
transform: translateY(-5px); | |
box-shadow: 0 15px 40px rgba(0,0,0,0.2); | |
} | |
.example-grid { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); | |
gap: 15px; | |
margin-top: 20px; | |
} | |
.example-category { | |
background: #f8f9fa; | |
border-radius: 10px; | |
padding: 15px; | |
border-left: 4px solid #667eea; | |
} | |
.example-category h4 { | |
margin: 0 0 10px 0; | |
color: #2d3748; | |
font-weight: 600; | |
} | |
.status-success { | |
background: linear-gradient(135deg, #48bb78 0%, #38a169 100%); | |
color: white; | |
padding: 10px 15px; | |
border-radius: 8px; | |
font-weight: 500; | |
} | |
.status-warning { | |
background: linear-gradient(135deg, #ed8936 0%, #dd6b20 100%); | |
color: white; | |
padding: 10px 15px; | |
border-radius: 8px; | |
font-weight: 500; | |
} | |
.status-error { | |
background: linear-gradient(135deg, #f56565 0%, #e53e3e 100%); | |
color: white; | |
padding: 10px 15px; | |
border-radius: 8px; | |
font-weight: 500; | |
} | |
.results-section { | |
background: white; | |
border-radius: 15px; | |
padding: 30px; | |
margin: 30px 0; | |
box-shadow: 0 8px 25px rgba(0,0,0,0.1); | |
} | |
.tool-info { | |
background: #f7fafc; | |
border-left: 4px solid #4299e1; | |
padding: 15px; | |
border-radius: 8px; | |
margin: 15px 0; | |
} | |
.performance-badge { | |
background: linear-gradient(135deg, #38b2ac 0%, #319795 100%); | |
color: white; | |
padding: 8px 15px; | |
border-radius: 20px; | |
font-weight: 500; | |
display: inline-block; | |
margin: 10px 0; | |
} | |
.footer-section { | |
background: #2d3748; | |
color: white; | |
padding: 30px; | |
border-radius: 15px; | |
margin-top: 30px; | |
text-align: center; | |
} | |
.footer-section a { | |
color: #63b3ed; | |
text-decoration: none; | |
font-weight: 500; | |
} | |
.footer-section a:hover { | |
color: #90cdf4; | |
text-decoration: underline; | |
} | |
.prompt-example { | |
background: #ebf8ff; | |
border: 1px solid #bee3f8; | |
border-radius: 8px; | |
padding: 12px; | |
margin: 8px 0; | |
cursor: pointer; | |
transition: all 0.3s ease; | |
} | |
.prompt-example:hover { | |
background: #bee3f8; | |
transform: translateX(5px); | |
} | |
.prompt-example-title { | |
font-weight: 600; | |
color: #2b6cb0; | |
margin-bottom: 5px; | |
} | |
.prompt-example-text { | |
font-size: 0.9rem; | |
color: #4a5568; | |
line-height: 1.4; | |
} | |
</style> | |
""" | |
def validate_api_key(api_key): | |
if not api_key or api_key.strip() == "": | |
return "❌ Please enter a valid API key", False | |
success, message = fact_checker.initialize_client(api_key.strip()) | |
return message, success | |
def process_query(query, model, temperature, api_key, system_prompt): | |
if not api_key or api_key.strip() == "": | |
return "❌ Please set your API key first", "", "" | |
if not query or query.strip() == "": | |
return "❌ Please enter a query", "", "" | |
# Initialize client if not already done | |
if not fact_checker.client: | |
success, message = fact_checker.initialize_client(api_key.strip()) | |
if not success: | |
return message, "", "" | |
response, tool_info, response_time = fact_checker.query_compound_model( | |
query.strip(), model, temperature, system_prompt.strip() if system_prompt else None | |
) | |
# Format response with timestamp | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
formatted_response = f"**Query:** {query}\n\n**Response:**\n{response}\n\n---\n*Generated at {timestamp} in {response_time}s*" | |
return formatted_response, tool_info or "", f"⚡ Response time: {response_time}s" | |
def reset_system_prompt(): | |
return fact_checker.get_system_prompt() | |
def load_example(example_text): | |
return example_text | |
def load_custom_prompt(prompt_text): | |
return prompt_text | |
# Create the Gradio interface | |
with gr.Blocks(title="Real-time Fact Checker & News Agent", css=custom_css) as demo: | |
# Header | |
gr.HTML(""" | |
<div class="main-header"> | |
<h1>🔍 Real-time Fact Checker & News Agent</h1> | |
<p>Powered by Groq's Compound Models with Built-in Web Search</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# API Key section | |
with gr.Group(): | |
gr.HTML('<div class="feature-card">') | |
gr.Markdown("### 🔑 API Configuration") | |
api_key_input = gr.Textbox( | |
label="Groq API Key", | |
placeholder="Enter your Groq API key here...", | |
type="password", | |
info="Get your free API key from https://console.groq.com/" | |
) | |
api_status = gr.Textbox( | |
label="Status", | |
value="⚠️ Please enter your API key", | |
interactive=False | |
) | |
validate_btn = gr.Button("Validate API Key", variant="secondary") | |
gr.HTML('</div>') | |
# Advanced options | |
with gr.Group(): | |
gr.HTML('<div class="feature-card">') | |
gr.Markdown("### ⚙️ Advanced Options") | |
# Custom System Prompt Examples | |
with gr.Accordion("📝 System Prompt Examples (Click to view)", open=False): | |
gr.Markdown("**Click any example to load it as your system prompt:**") | |
custom_prompts = fact_checker.get_custom_prompt_examples() | |
for title, prompt in custom_prompts.items(): | |
with gr.Row(): | |
gr.HTML(f""" | |
<div class="prompt-example" onclick="document.getElementById('system_prompt_input').value = '{prompt}'"> | |
<div class="prompt-example-title">{title}</div> | |
<div class="prompt-example-text">{prompt[:100]}...</div> | |
</div> | |
""") | |
with gr.Accordion("🔧 System Prompt (Click to customize)", open=False): | |
system_prompt_input = gr.Textbox( | |
label="System Prompt", | |
value=fact_checker.get_system_prompt(), | |
lines=8, | |
info="Customize how the AI behaves and responds", | |
elem_id="system_prompt_input" | |
) | |
reset_prompt_btn = gr.Button("Reset to Default", variant="secondary", size="sm") | |
# Add buttons for each custom prompt | |
gr.Markdown("**Quick Load Custom Prompts:**") | |
custom_prompts = fact_checker.get_custom_prompt_examples() | |
for title, prompt in custom_prompts.items(): | |
prompt_btn = gr.Button(title, variant="secondary", size="sm") | |
prompt_btn.click( | |
fn=lambda p=prompt: p, | |
outputs=[system_prompt_input] | |
) | |
gr.HTML('</div>') | |
# Query section | |
with gr.Group(): | |
gr.HTML('<div class="feature-card">') | |
gr.Markdown("### 💭 Your Query") | |
query_input = gr.Textbox( | |
label="Ask anything that requires real-time information", | |
placeholder="e.g., What are the latest AI developments today?", | |
lines=4 | |
) | |
with gr.Row(): | |
model_choice = gr.Dropdown( | |
choices=fact_checker.model_options, | |
value="compound-beta", | |
label="Model", | |
info="compound-beta: More capable | compound-beta-mini: Faster" | |
) | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
info="Higher = more creative, Lower = more focused" | |
) | |
submit_btn = gr.Button("🔍 Get Real-time Information", variant="primary", size="lg") | |
clear_btn = gr.Button("Clear", variant="secondary") | |
gr.HTML('</div>') | |
with gr.Column(scale=1): | |
# Example queries with tabs | |
with gr.Group(): | |
gr.HTML('<div class="feature-card">') | |
gr.Markdown("### 📝 Example Queries") | |
gr.Markdown("Click any example to load it:") | |
examples = fact_checker.get_example_queries() | |
with gr.Accordion("📰 Latest News", open=True): | |
for query in examples["📰 Latest News"]: | |
example_btn = gr.Button(query, variant="secondary", size="sm") | |
example_btn.click( | |
fn=lambda q=query: q, | |
outputs=[query_input] | |
) | |
with gr.Accordion("💰 Financial Data", open=False): | |
for query in examples["💰 Financial Data"]: | |
example_btn = gr.Button(query, variant="secondary", size="sm") | |
example_btn.click( | |
fn=lambda q=query: q, | |
outputs=[query_input] | |
) | |
with gr.Accordion("🌤️ Weather Updates", open=False): | |
for query in examples["🌤️ Weather Updates"]: | |
example_btn = gr.Button(query, variant="secondary", size="sm") | |
example_btn.click( | |
fn=lambda q=query: q, | |
outputs=[query_input] | |
) | |
with gr.Accordion("🔬 Science & Technology", open=False): | |
for query in examples["🔬 Science & Technology"]: | |
example_btn = gr.Button(query, variant="secondary", size="sm") | |
example_btn.click( | |
fn=lambda q=query: q, | |
outputs=[query_input] | |
) | |
with gr.Accordion("🏆 Sports & Entertainment", open=False): | |
for query in examples["🏆 Sports & Entertainment"]: | |
example_btn = gr.Button(query, variant="secondary", size="sm") | |
example_btn.click( | |
fn=lambda q=query: q, | |
outputs=[query_input] | |
) | |
with gr.Accordion("🔍 Fact Checking", open=False): | |
for query in examples["🔍 Fact Checking"]: | |
example_btn = gr.Button(query, variant="secondary", size="sm") | |
example_btn.click( | |
fn=lambda q=query: q, | |
outputs=[query_input] | |
) | |
gr.HTML('</div>') | |
# Results section | |
gr.HTML('<div class="results-section">') | |
gr.Markdown("### 📊 Results") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
response_output = gr.Markdown( | |
label="Response", | |
value="*Your response will appear here...*" | |
) | |
with gr.Column(scale=1): | |
tool_info_output = gr.Markdown( | |
label="Tool Execution Info", | |
value="*Tool execution details will appear here...*" | |
) | |
performance_output = gr.Textbox( | |
label="Performance", | |
value="", | |
interactive=False | |
) | |
gr.HTML('</div>') | |
# Event handlers | |
validate_btn.click( | |
fn=validate_api_key, | |
inputs=[api_key_input], | |
outputs=[api_status, gr.State()] | |
) | |
reset_prompt_btn.click( | |
fn=reset_system_prompt, | |
outputs=[system_prompt_input] | |
) | |
submit_btn.click( | |
fn=process_query, | |
inputs=[query_input, model_choice, temperature, api_key_input, system_prompt_input], | |
outputs=[response_output, tool_info_output, performance_output] | |
) | |
clear_btn.click( | |
fn=lambda: ("", "*Your response will appear here...*", "*Tool execution details will appear here...*", ""), | |
outputs=[query_input, response_output, tool_info_output, performance_output] | |
) | |
# Footer | |
gr.HTML(""" | |
<div class="footer-section"> | |
<h3>🔗 Useful Links</h3> | |
<p> | |
<a href="https://console.groq.com/" target="_blank">Groq Console</a> - Get your free API key<br> | |
<a href="https://console.groq.com/docs/quickstart" target="_blank">Groq Documentation</a> - Learn more about Groq models<br> | |
<a href="https://console.groq.com/docs/models" target="_blank">Compound Models Info</a> - Details about compound models | |
</p> | |
<h3>💡 Tips</h3> | |
<ul style="text-align: left; display: inline-block;"> | |
<li>The compound models automatically use web search when real-time information is needed</li> | |
<li>Try different temperature settings: 0.1 for factual queries, 0.7-0.9 for creative questions</li> | |
<li>compound-beta is more capable but slower, compound-beta-mini is faster but less capable</li> | |
<li>Use custom system prompts to specialize the AI for different types of queries</li> | |
<li>Check the Tool Execution Info to see when web search was used</li> | |
</ul> | |
</div> | |
""") | |
return demo | |
# Launch the application | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch( | |
share=True | |
) |