File size: 6,823 Bytes
8b97f99
 
 
 
 
a7b4db3
8b97f99
 
a7b4db3
8b97f99
 
 
 
 
a7b4db3
8b97f99
 
a7b4db3
8b97f99
 
a7b4db3
63271b3
a7b4db3
63271b3
 
892bcef
63271b3
8b97f99
 
 
 
 
 
 
a7b4db3
 
 
81e2902
a7b4db3
 
8b97f99
a7b4db3
8b97f99
a7b4db3
 
e6cee82
a7b4db3
 
 
 
 
 
8b97f99
 
a7b4db3
 
e6cee82
a7b4db3
e6cee82
a7b4db3
8b97f99
 
a7b4db3
 
e6cee82
a7b4db3
8b97f99
 
 
 
e96901a
8b97f99
e96901a
a7b4db3
 
 
 
8b97f99
 
a7b4db3
 
e6cee82
a7b4db3
8b97f99
 
a7b4db3
 
 
 
 
 
8b97f99
 
a7b4db3
8b97f99
81e2902
8b97f99
 
 
a7b4db3
 
8b97f99
 
 
 
 
 
 
 
 
a7b4db3
 
8b97f99
 
 
 
a7b4db3
8b97f99
a7b4db3
8b97f99
 
a7b4db3
8b97f99
a7b4db3
8b97f99
 
 
a7b4db3
8b97f99
a7b4db3
8b97f99
 
 
a7b4db3
8b97f99
 
 
 
 
a7b4db3
 
 
 
 
 
8b97f99
 
a7b4db3
 
 
 
e6cee82
d60058e
e6cee82
 
 
a7b4db3
e6cee82
 
81e2902
d60058e
e6cee82
 
 
8b97f99
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import openai
import fitz  # PyMuPDF for PDF processing
import base64

# Store API Key
api_key = ""

# Function to update API Key
def set_api_key(key):
    global api_key
    api_key = key
    return "API Key Set Successfully!"

# Function to interact with OpenAI API using conversation history
def query_openai(messages, temperature, top_p, max_output_tokens):
    if not api_key:
        return ["Please enter your OpenAI API key first."], messages

    try:
        openai.api_key = api_key  # Set API Key dynamically

        # Ensure valid values for OpenAI parameters
        temperature = float(temperature) if temperature else 1.0
        top_p = float(top_p) if top_p else 1.0
        max_output_tokens = int(max_output_tokens) if max_output_tokens else 2048

        response = openai.ChatCompletion.create(
            model="gpt-4.5-preview",
            messages=messages,
            temperature=temperature,
            top_p=top_p,
            max_tokens=max_output_tokens
        )

        bot_response = response["choices"][0]["message"]["content"]
        messages.append({"role": "assistant", "content": bot_response})  # Store bot response in history

        return messages, messages  # Return updated conversation

    except Exception as e:
        return [f"Error: {str(e)}"], messages

# Image URL Chat
def image_url_chat(image_url, text_query, messages, temperature, top_p, max_output_tokens):
    if not image_url or not text_query:
        return ["Please provide an image URL and a query."], messages

    messages.append({"role": "user", "content": [
        {"type": "image_url", "image_url": {"url": image_url}},
        {"type": "text", "text": text_query}
    ]})
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Text Chat
def text_chat(text_query, messages, temperature, top_p, max_output_tokens):
    if not text_query:
        return ["Please enter a query."], messages

    messages.append({"role": "user", "content": text_query})
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Image Chat
def image_chat(image_file, text_query, messages, temperature, top_p, max_output_tokens):
    if image_file is None or not text_query:
        return ["Please upload an image and provide a query."], messages

    # Encode image as base64
    with open(image_file, "rb") as img:
        base64_image = base64.b64encode(img.read()).decode("utf-8")

    image_data = f"data:image/jpeg;base64,{base64_image}"

    messages.append({"role": "user", "content": [
        {"type": "image_url", "image_url": {"url": image_data}},
        {"type": "text", "text": text_query}
    ]})
    return query_openai(messages, temperature, top_p, max_output_tokens)

# PDF Chat
def pdf_chat(pdf_file, text_query, messages, temperature, top_p, max_output_tokens):
    if pdf_file is None or not text_query:
        return ["Please upload a PDF and provide a query."], messages

    doc = fitz.open(pdf_file)
    text = "\n".join([page.get_text("text") for page in doc][:5])  # Extract text from first 5 pages

    messages.append({"role": "user", "content": [
        {"type": "text", "text": text},
        {"type": "text", "text": text_query}
    ]})
    return query_openai(messages, temperature, top_p, max_output_tokens)

# Function to clear chat history and reset parameters
def clear_chat():
    return [], [], [], [], "", "", [], "", [], None, "", [], None, "", 1.0, 1.0, 2048

# Gradio UI Layout
with gr.Blocks() as demo:
    gr.Markdown("## GPT-4.5 Preview Conversational Chatbot")

    # API Key Input
    with gr.Row():
        api_key_input = gr.Textbox(label="Enter OpenAI API Key", type="password")
        api_key_button = gr.Button("Set API Key")
        api_key_output = gr.Textbox(label="API Key Status", interactive=False)

    with gr.Row():
        temperature = gr.Slider(0, 2, value=1.0, step=0.1, label="Temperature")
        top_p = gr.Slider(0, 1, value=1.0, step=0.1, label="Top-P")
        max_output_tokens = gr.Slider(0, 16384, value=2048, step=512, label="Max Output Tokens")

    with gr.Tabs():
        with gr.Tab("Image URL Chat"):
            image_url = gr.Textbox(label="Enter Image URL")
            image_query = gr.Textbox(label="Ask about the Image")
            image_url_output = gr.Chatbot(label="Conversation History", elem_id="chatbot1")
            image_url_button = gr.Button("Ask")

        with gr.Tab("Text Chat"):
            text_query = gr.Textbox(label="Enter your query")
            text_output = gr.Chatbot(label="Conversation History", elem_id="chatbot2")
            text_button = gr.Button("Ask")

        with gr.Tab("Image Chat"):
            image_upload = gr.File(label="Upload an Image", type="filepath")
            image_text_query = gr.Textbox(label="Ask about the uploaded image")
            image_output = gr.Chatbot(label="Conversation History", elem_id="chatbot3")
            image_button = gr.Button("Ask")

        with gr.Tab("PDF Chat"):
            pdf_upload = gr.File(label="Upload a PDF", type="filepath")
            pdf_text_query = gr.Textbox(label="Ask about the uploaded PDF")
            pdf_output = gr.Chatbot(label="Conversation History", elem_id="chatbot4")
            pdf_button = gr.Button("Ask")

    # Clear chat button
    clear_button = gr.Button("Clear Chat")

    # Chat Histories
    image_url_chat_history = gr.State([])
    text_chat_history = gr.State([])
    image_chat_history = gr.State([])
    pdf_chat_history = gr.State([])

    # Button Click Actions
    api_key_button.click(set_api_key, inputs=[api_key_input], outputs=[api_key_output])
    image_url_button.click(image_url_chat, [image_url, image_query, image_url_chat_history, temperature, top_p, max_output_tokens], [image_url_output, image_url_chat_history])
    text_button.click(text_chat, [text_query, text_chat_history, temperature, top_p, max_output_tokens], [text_output, text_chat_history])
    image_button.click(image_chat, [image_upload, image_text_query, image_chat_history, temperature, top_p, max_output_tokens], [image_output, image_chat_history])
    pdf_button.click(pdf_chat, [pdf_upload, pdf_text_query, pdf_chat_history, temperature, top_p, max_output_tokens], [pdf_output, pdf_chat_history])

    # Fix: Clear button resets all necessary fields correctly
    clear_button.click(
        clear_chat,
        outputs=[
            image_url_chat_history, text_chat_history, image_chat_history, pdf_chat_history,
            image_url, image_query, image_url_output, 
            text_query, text_output, 
            image_upload, image_text_query, image_output, 
            pdf_upload, pdf_text_query, pdf_output, 
            temperature, top_p, max_output_tokens
        ]
    )

# Launch Gradio App
if __name__ == "__main__":
    demo.launch()