Update app.py
Browse files
app.py
CHANGED
@@ -61,7 +61,8 @@ def extract_medicines(api_key, image):
|
|
61 |
def recommend_medicine(api_key, medicine_name, csv_file=None):
|
62 |
"""
|
63 |
Use Together API to recommend alternative medicines based on input medicine name
|
64 |
-
using data from the provided CSV file with specific column structure
|
|
|
65 |
"""
|
66 |
try:
|
67 |
# If CSV file is provided, use it; otherwise use default
|
@@ -73,14 +74,36 @@ def recommend_medicine(api_key, medicine_name, csv_file=None):
|
|
73 |
df = pd.read_csv(csv_file.name)
|
74 |
else:
|
75 |
# Use the default medicine_dataset.csv in the current directory
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
-
#
|
79 |
-
|
80 |
-
return f"Error: Medicine '{medicine_name}' not found in the dataset. Please check the spelling or try another medicine."
|
81 |
|
82 |
-
# Create
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
- name: Medicine name
|
85 |
- substitute0 through substitute4: Potential substitute medicines
|
86 |
- sideEffect0 through sideEffect41: Possible side effects
|
@@ -90,47 +113,28 @@ def recommend_medicine(api_key, medicine_name, csv_file=None):
|
|
90 |
- Therapeutic Class: The therapeutic classification
|
91 |
- Action Class: How the medicine works
|
92 |
|
93 |
-
|
94 |
-
1. Find the row in the dataset where name matches exactly "{medicine_name}"
|
95 |
-
2. Find alternatives by:
|
96 |
-
- Using the substitute0-substitute4 values as primary alternatives
|
97 |
-
- Finding other medicines with similar Chemical Class, Therapeutic Class, or Action Class
|
98 |
|
99 |
-
|
100 |
-
- Name of the alternative medicine
|
101 |
-
- All side effects (from relevant sideEffect columns)
|
102 |
-
- All uses (from relevant use columns)
|
103 |
-
- Chemical Class, Habit Forming status, Therapeutic Class, and Action Class
|
104 |
-
- A similarity score (0-1) indicating how similar it is to the original medicine
|
105 |
|
106 |
-
|
107 |
-
""
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
if substitutes:
|
126 |
-
system_prompt += f"The primary substitutes for {medicine_name} are: {', '.join(substitutes)}\n\n"
|
127 |
-
|
128 |
-
# Include a sample of other medicines for comparison
|
129 |
-
other_medicines = df[df['name'] != medicine_name].sample(min(10, len(df)-1)) if len(df) > 1 else pd.DataFrame()
|
130 |
-
if not other_medicines.empty:
|
131 |
-
system_prompt += "Here's a sample of other medicines in the dataset for comparison:\n"
|
132 |
-
for idx, row in other_medicines.iterrows():
|
133 |
-
system_prompt += f"- {row['name']}: Chemical Class: {row['Chemical Class']}, Therapeutic Class: {row['Therapeutic Class']}, Action Class: {row['Action Class']}\n"
|
134 |
|
135 |
# Initialize Together client with the API key
|
136 |
client = Together(api_key=api_key)
|
@@ -145,14 +149,20 @@ Format the response clearly with headings for "Recommended Medicines", "Medicine
|
|
145 |
},
|
146 |
{
|
147 |
"role": "user",
|
148 |
-
"content": f"Please recommend alternatives for {medicine_name} based on the
|
149 |
}
|
150 |
],
|
151 |
-
max_tokens=2000
|
|
|
152 |
)
|
153 |
|
154 |
-
#
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
except Exception as e:
|
158 |
return f"Error: {str(e)}"
|
@@ -181,10 +191,77 @@ def send_medicine_to_recommender(api_key, medicine_names, csv_file):
|
|
181 |
# Call the recommend medicine function with the first extracted medicine
|
182 |
return recommend_medicine(api_key, first_medicine, csv_file)
|
183 |
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
with gr.Blocks(title="Medicine Assistant") as app:
|
186 |
gr.Markdown("# Medicine Assistant")
|
187 |
-
gr.Markdown("This application helps you extract medicine names from prescriptions
|
188 |
|
189 |
# API key input (shared between tabs)
|
190 |
api_key_input = gr.Textbox(
|
@@ -194,11 +271,10 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
194 |
)
|
195 |
|
196 |
# Create a file input for CSV that can be shared between tabs
|
197 |
-
# Fixed the 'type' parameter to use 'filepath' instead of 'file'
|
198 |
csv_file_input = gr.File(
|
199 |
label="Upload Medicine CSV (Optional)",
|
200 |
file_types=[".csv"],
|
201 |
-
type="filepath"
|
202 |
)
|
203 |
gr.Markdown("If no CSV is uploaded, the app will use the default 'medicine_dataset.csv' file.")
|
204 |
|
@@ -211,11 +287,22 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
211 |
with gr.Column():
|
212 |
image_input = gr.Image(type="filepath", label="Upload Prescription Image")
|
213 |
extract_btn = gr.Button("Extract Medicines")
|
214 |
-
recommend_from_extract_btn = gr.Button("Get Recommendations for First Medicine")
|
215 |
|
216 |
with gr.Column():
|
217 |
extracted_output = gr.Textbox(label="Extracted Medicines", lines=10)
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
# Connect the buttons to functions
|
221 |
extract_btn.click(
|
@@ -230,13 +317,21 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
230 |
outputs=recommendation_from_extract_output
|
231 |
)
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
gr.Markdown("""
|
234 |
### How to use:
|
235 |
1. Enter your Together API key
|
236 |
2. Upload a clear image of a prescription
|
237 |
3. Click 'Extract Medicines' to see the identified medicines
|
238 |
4. Optionally upload a custom medicine dataset CSV
|
239 |
-
5.
|
|
|
|
|
240 |
|
241 |
### Note:
|
242 |
- Your API key is used only for the current session
|
@@ -251,12 +346,12 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
251 |
with gr.Column():
|
252 |
medicine_name = gr.Textbox(
|
253 |
label="Medicine Name",
|
254 |
-
placeholder="Enter a medicine name
|
255 |
)
|
256 |
submit_btn = gr.Button("Get Recommendations", variant="primary")
|
257 |
|
258 |
with gr.Column():
|
259 |
-
recommendation_output = gr.Markdown(
|
260 |
|
261 |
submit_btn.click(
|
262 |
recommend_medicine,
|
@@ -267,30 +362,25 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
267 |
gr.Markdown("""
|
268 |
## How to use this tool:
|
269 |
1. Enter your Together API key (same key used across the application)
|
270 |
-
2. Enter a medicine name
|
271 |
3. Click "Get Recommendations" to see alternatives
|
272 |
|
273 |
-
###
|
274 |
-
|
275 |
-
-
|
276 |
-
-
|
277 |
-
- `sideEffect0` through `sideEffect41`: Possible side effects
|
278 |
-
- `use0` through `use4`: Medical uses
|
279 |
-
- `Chemical Class`: The chemical classification
|
280 |
-
- `Habit Forming`: Whether the medicine is habit-forming
|
281 |
-
- `Therapeutic Class`: The therapeutic classification
|
282 |
-
- `Action Class`: How the medicine works
|
283 |
""")
|
284 |
|
285 |
gr.Markdown("""
|
286 |
## About This Application
|
287 |
|
288 |
-
This Medicine Assistant application combines
|
289 |
|
290 |
1. **Prescription Medicine Extractor**: Uses computer vision AI to identify medicine names from prescription images
|
291 |
2. **Medicine Alternative Recommender**: Provides detailed information about alternative medications
|
|
|
292 |
|
293 |
-
|
294 |
|
295 |
### Important Note
|
296 |
|
|
|
61 |
def recommend_medicine(api_key, medicine_name, csv_file=None):
|
62 |
"""
|
63 |
Use Together API to recommend alternative medicines based on input medicine name
|
64 |
+
using data from the provided CSV file with specific column structure.
|
65 |
+
It will use AI to find similar medicines even if the exact name isn't in the dataset.
|
66 |
"""
|
67 |
try:
|
68 |
# If CSV file is provided, use it; otherwise use default
|
|
|
74 |
df = pd.read_csv(csv_file.name)
|
75 |
else:
|
76 |
# Use the default medicine_dataset.csv in the current directory
|
77 |
+
try:
|
78 |
+
df = pd.read_csv("medicine_dataset.csv")
|
79 |
+
except FileNotFoundError:
|
80 |
+
return "Error: Default medicine_dataset.csv not found. Please upload a CSV file."
|
81 |
|
82 |
+
# Check if medicine is in the dataset
|
83 |
+
medicine_exists = medicine_name in df['name'].values
|
|
|
84 |
|
85 |
+
# Create a helpful context about the dataset to send to the LLM
|
86 |
+
dataset_overview = f"The dataset contains {len(df)} medicines with columns for name, substitutes, side effects, uses, chemical class, etc."
|
87 |
+
|
88 |
+
# Sample of medicine names to give the model context
|
89 |
+
sample_names = df['name'].sample(min(20, len(df))).tolist()
|
90 |
+
medicine_sample = f"Sample medicines in the dataset: {', '.join(sample_names)}"
|
91 |
+
|
92 |
+
# Extract specific medicine data if available
|
93 |
+
medicine_data = None
|
94 |
+
medicine_info_str = ""
|
95 |
+
if medicine_exists:
|
96 |
+
medicine_data = df[df['name'] == medicine_name]
|
97 |
+
medicine_info_str = medicine_data.to_string(index=False)
|
98 |
+
|
99 |
+
# Create system prompt with dataset context
|
100 |
+
system_prompt = f"""You are a pharmaceutical expert system that recommends alternative medicines based on a comprehensive medicine dataset. The user has provided the medicine name "{medicine_name}".
|
101 |
+
|
102 |
+
DATASET INFORMATION:
|
103 |
+
{dataset_overview}
|
104 |
+
{medicine_sample}
|
105 |
+
|
106 |
+
The dataset has the following columns:
|
107 |
- name: Medicine name
|
108 |
- substitute0 through substitute4: Potential substitute medicines
|
109 |
- sideEffect0 through sideEffect41: Possible side effects
|
|
|
113 |
- Therapeutic Class: The therapeutic classification
|
114 |
- Action Class: How the medicine works
|
115 |
|
116 |
+
YOUR TASK:
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
{"The medicine was found in the dataset with the following information:" if medicine_exists else "The medicine was NOT found in the dataset with an exact match. Your task is to:"}
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
{medicine_info_str if medicine_exists else "1. Identify what kind of medicine this likely is based on its name (e.g., antibiotics, pain relievers, etc.)"}
|
121 |
+
{'' if medicine_exists else "2. Look for medicines in the sample list that might be similar or serve similar purposes"}
|
122 |
|
123 |
+
Please recommend alternative medicines for "{medicine_name}" with the following details for each:
|
124 |
+
1. Name of the alternative medicine
|
125 |
+
2. Why it's a good alternative (similar chemical composition, therapeutic use, etc.)
|
126 |
+
3. Potential side effects to be aware of
|
127 |
+
4. Usage recommendations
|
128 |
+
5. Similarity to the original medicine (high, medium, low)
|
129 |
+
|
130 |
+
Include at least 3-5 alternatives if possible.
|
131 |
+
|
132 |
+
IMPORTANT:
|
133 |
+
- If the medicine name contains strength or formulation (like "500mg" or "Duo"), focus on finding the base medicine first
|
134 |
+
- Explain why these alternatives might be suitable replacements
|
135 |
+
- Include appropriate medical disclaimers
|
136 |
+
- Format your response clearly with headings for each alternative medicine
|
137 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
# Initialize Together client with the API key
|
140 |
client = Together(api_key=api_key)
|
|
|
149 |
},
|
150 |
{
|
151 |
"role": "user",
|
152 |
+
"content": f"Please recommend alternatives for {medicine_name} based on the available information."
|
153 |
}
|
154 |
],
|
155 |
+
max_tokens=2000,
|
156 |
+
temperature=0.7 # Slightly higher temperature for creative recommendations
|
157 |
)
|
158 |
|
159 |
+
# Get the raw response
|
160 |
+
recommendation_text = response.choices[0].message.content
|
161 |
+
|
162 |
+
# Add disclaimer
|
163 |
+
final_response = recommendation_text + "\n\n---\n\n**DISCLAIMER:** This information is for educational purposes only. Always consult with a healthcare professional before making any changes to your medication."
|
164 |
+
|
165 |
+
return final_response
|
166 |
|
167 |
except Exception as e:
|
168 |
return f"Error: {str(e)}"
|
|
|
191 |
# Call the recommend medicine function with the first extracted medicine
|
192 |
return recommend_medicine(api_key, first_medicine, csv_file)
|
193 |
|
194 |
+
def analyze_full_prescription(api_key, medicine_names, csv_file):
|
195 |
+
"""
|
196 |
+
Takes all extracted medicine names and analyzes their interactions and provides comprehensive information
|
197 |
+
"""
|
198 |
+
if not medicine_names or medicine_names.startswith("Error") or medicine_names.startswith("Please"):
|
199 |
+
return "Please extract valid medicine names first"
|
200 |
+
|
201 |
+
try:
|
202 |
+
# Parse the medicine names from the extracted text
|
203 |
+
medicine_lines = medicine_names.strip().split('\n')
|
204 |
+
cleaned_medicines = []
|
205 |
+
|
206 |
+
# Clean up medicine names (remove bullets, numbers, etc.)
|
207 |
+
for medicine in medicine_lines:
|
208 |
+
cleaned_medicine = medicine.lstrip('•-*0123456789. ').strip()
|
209 |
+
if cleaned_medicine:
|
210 |
+
cleaned_medicines.append(cleaned_medicine)
|
211 |
+
|
212 |
+
if not cleaned_medicines:
|
213 |
+
return "No valid medicine names found in extraction"
|
214 |
+
|
215 |
+
# Create a prompt for the LLM to analyze the full prescription
|
216 |
+
medicines_list = ", ".join(cleaned_medicines)
|
217 |
+
|
218 |
+
system_prompt = f"""You are a pharmaceutical expert analyzing a full prescription containing the following medicines: {medicines_list}.
|
219 |
+
|
220 |
+
Please provide a comprehensive analysis including:
|
221 |
+
|
222 |
+
1. Purpose: The likely medical condition(s) being treated with this combination of medicines
|
223 |
+
2. Potential interactions: Any known drug interactions between these medicines
|
224 |
+
3. Side effects: Common side effects to watch for when taking this combination
|
225 |
+
4. Recommendations: General advice for the patient taking these medicines
|
226 |
+
5. Questions for the doctor: Important questions the patient should ask their healthcare provider
|
227 |
+
|
228 |
+
Base your analysis on pharmacological knowledge about these medicines and their typical uses.
|
229 |
+
"""
|
230 |
+
|
231 |
+
# Initialize Together client with the API key
|
232 |
+
client = Together(api_key=api_key)
|
233 |
+
|
234 |
+
# Make API call
|
235 |
+
response = client.chat.completions.create(
|
236 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
237 |
+
messages=[
|
238 |
+
{
|
239 |
+
"role": "system",
|
240 |
+
"content": system_prompt
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"role": "user",
|
244 |
+
"content": f"Please analyze this prescription with the following medicines: {medicines_list}"
|
245 |
+
}
|
246 |
+
],
|
247 |
+
max_tokens=2000,
|
248 |
+
temperature=0.3 # Lower temperature for more factual responses
|
249 |
+
)
|
250 |
+
|
251 |
+
analysis_text = response.choices[0].message.content
|
252 |
+
|
253 |
+
# Add disclaimer
|
254 |
+
final_response = analysis_text + "\n\n---\n\n**DISCLAIMER:** This analysis is for informational purposes only and should not replace professional medical advice. Always consult with your healthcare provider about your prescription."
|
255 |
+
|
256 |
+
return final_response
|
257 |
+
|
258 |
+
except Exception as e:
|
259 |
+
return f"Error: {str(e)}"
|
260 |
+
|
261 |
+
# Create Gradio interface with tabs for all functionalities
|
262 |
with gr.Blocks(title="Medicine Assistant") as app:
|
263 |
gr.Markdown("# Medicine Assistant")
|
264 |
+
gr.Markdown("This application helps you extract medicine names from prescriptions, find alternative medicines, and analyze full prescriptions.")
|
265 |
|
266 |
# API key input (shared between tabs)
|
267 |
api_key_input = gr.Textbox(
|
|
|
271 |
)
|
272 |
|
273 |
# Create a file input for CSV that can be shared between tabs
|
|
|
274 |
csv_file_input = gr.File(
|
275 |
label="Upload Medicine CSV (Optional)",
|
276 |
file_types=[".csv"],
|
277 |
+
type="filepath"
|
278 |
)
|
279 |
gr.Markdown("If no CSV is uploaded, the app will use the default 'medicine_dataset.csv' file.")
|
280 |
|
|
|
287 |
with gr.Column():
|
288 |
image_input = gr.Image(type="filepath", label="Upload Prescription Image")
|
289 |
extract_btn = gr.Button("Extract Medicines")
|
|
|
290 |
|
291 |
with gr.Column():
|
292 |
extracted_output = gr.Textbox(label="Extracted Medicines", lines=10)
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
with gr.Column(scale=1):
|
296 |
+
recommend_from_extract_btn = gr.Button("Get Recommendations for First Medicine", variant="primary")
|
297 |
+
analyze_full_btn = gr.Button("Analyze Full Prescription", variant="secondary")
|
298 |
+
|
299 |
+
with gr.Column(scale=2):
|
300 |
+
output_tabs = gr.Tabs()
|
301 |
+
with output_tabs:
|
302 |
+
with gr.Tab("Recommendations"):
|
303 |
+
recommendation_from_extract_output = gr.Markdown()
|
304 |
+
with gr.Tab("Full Analysis"):
|
305 |
+
full_analysis_output = gr.Markdown()
|
306 |
|
307 |
# Connect the buttons to functions
|
308 |
extract_btn.click(
|
|
|
317 |
outputs=recommendation_from_extract_output
|
318 |
)
|
319 |
|
320 |
+
analyze_full_btn.click(
|
321 |
+
fn=analyze_full_prescription,
|
322 |
+
inputs=[api_key_input, extracted_output, csv_file_input],
|
323 |
+
outputs=full_analysis_output
|
324 |
+
)
|
325 |
+
|
326 |
gr.Markdown("""
|
327 |
### How to use:
|
328 |
1. Enter your Together API key
|
329 |
2. Upload a clear image of a prescription
|
330 |
3. Click 'Extract Medicines' to see the identified medicines
|
331 |
4. Optionally upload a custom medicine dataset CSV
|
332 |
+
5. Choose to:
|
333 |
+
- Get alternatives for the first medicine
|
334 |
+
- Analyze the entire prescription for interactions and information
|
335 |
|
336 |
### Note:
|
337 |
- Your API key is used only for the current session
|
|
|
346 |
with gr.Column():
|
347 |
medicine_name = gr.Textbox(
|
348 |
label="Medicine Name",
|
349 |
+
placeholder="Enter a medicine name (e.g., Augmentin 625 Duo)"
|
350 |
)
|
351 |
submit_btn = gr.Button("Get Recommendations", variant="primary")
|
352 |
|
353 |
with gr.Column():
|
354 |
+
recommendation_output = gr.Markdown()
|
355 |
|
356 |
submit_btn.click(
|
357 |
recommend_medicine,
|
|
|
362 |
gr.Markdown("""
|
363 |
## How to use this tool:
|
364 |
1. Enter your Together API key (same key used across the application)
|
365 |
+
2. Enter a medicine name - the AI will find it or match similar alternatives
|
366 |
3. Click "Get Recommendations" to see alternatives
|
367 |
|
368 |
+
### Features:
|
369 |
+
- Even if the exact medicine isn't in the database, the AI will try to find similar alternatives
|
370 |
+
- The system analyzes the medicine name to determine its likely purpose and composition
|
371 |
+
- Recommendations include substitutes, side effects, and usage information
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
""")
|
373 |
|
374 |
gr.Markdown("""
|
375 |
## About This Application
|
376 |
|
377 |
+
This Medicine Assistant application combines powerful tools powered by Large Language Models:
|
378 |
|
379 |
1. **Prescription Medicine Extractor**: Uses computer vision AI to identify medicine names from prescription images
|
380 |
2. **Medicine Alternative Recommender**: Provides detailed information about alternative medications
|
381 |
+
3. **Prescription Analyzer**: Analyzes entire prescriptions for potential interactions and insights
|
382 |
|
383 |
+
All tools utilize the Together AI platform for advanced AI capabilities. Your API key is not stored and is only used to make API calls during your active session.
|
384 |
|
385 |
### Important Note
|
386 |
|