File size: 3,173 Bytes
f29b99e
417a068
f29b99e
 
 
417a068
 
 
 
 
 
 
 
f29b99e
 
 
 
 
 
 
417a068
 
f29b99e
417a068
 
 
 
 
 
 
f29b99e
 
417a068
 
 
f29b99e
417a068
 
 
 
 
 
 
f29b99e
 
 
 
 
 
 
 
 
417a068
f29b99e
 
 
 
417a068
 
 
 
 
 
 
f29b99e
417a068
 
 
f29b99e
417a068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f29b99e
417a068
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import gradio as gr
from openai import OpenAI
import base64
import io

def solve_stem_problem(api_key, image, subject="math"):
    # Initialize OpenAI client with user-provided API key
    client = OpenAI(
        base_url="https://openrouter.ai/api/v1",
        api_key=api_key,
    )
    
    # Define detective based on subject
    detectives = {
        "math": "Algebra Ace",
        "physics": "Physics Phantom",
        "chemistry": "Chemistry Clue-finder",
        "coding": "Code Cracker"
    }
    detective = detectives.get(subject, "Algebra Ace")
    
    # Encode the uploaded image to base64
    try:
        # Convert the image to bytes
        img_byte_arr = io.BytesIO()
        image.save(img_byte_arr, format='PNG')
        img_byte_arr = img_byte_arr.getvalue()
        
        # Encode to base64
        encoded_image = base64.b64encode(img_byte_arr).decode('utf-8')
        image_url_data = f"data:image/png;base64,{encoded_image}"
    except Exception as e:
        return f"Error encoding image: {str(e)}"
    
    # Call the Gemini model
    try:
        completion = client.chat.completions.create(
            extra_headers={
                "HTTP-Referer": "https://stem-sleuth.example.com",
                "X-Title": "STEM Sleuth",
            },
            model="google/gemini-2.0-flash-exp:free",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": f"Act as {detective} and solve this {subject} problem step-by-step with a detective narrative."
                        },
                        {
                            "type": "image_url",
                            "image_url": {"url": image_url_data}
                        }
                    ]
                }
            ]
        )
        
        # Check for valid response
        if completion.choices and len(completion.choices) > 0 and completion.choices[0].message:
            solution = completion.choices[0].message.content
        else:
            solution = "Could not retrieve a solution from the API."
    except Exception as e:
        solution = f"Error calling API: {str(e)}"
    
    return solution

# Create Gradio interface
with gr.Blocks() as app:
    gr.Markdown("# STEM Sleuth Problem Solver")
    gr.Markdown("Upload an image of a STEM problem, select the subject, and provide your API key to get a step-by-step solution.")
    
    with gr.Row():
        api_key_input = gr.Textbox(label="OpenRouter API Key", type="password", placeholder="Enter your API key")
        subject_input = gr.Dropdown(
            choices=["math", "physics", "chemistry", "coding"],
            label="Subject",
            value="math"
        )
    
    image_input = gr.Image(type="pil", label="Upload Problem Image")
    solve_button = gr.Button("Solve Problem")
    output = gr.Textbox(label="Solution", lines=10)
    
    solve_button.click(
        fn=solve_stem_problem,
        inputs=[api_key_input, image_input, subject_input],
        outputs=output
    )

# Launch the app
app.launch()