File size: 11,454 Bytes
24a9f83 bc42021 35bfd69 24a9f83 35bfd69 24a9f83 35bfd69 24a9f83 35bfd69 24a9f83 35bfd69 24a9f83 bc42021 24a9f83 bc42021 24a9f83 bc42021 24a9f83 bc42021 35bfd69 24a9f83 35bfd69 24a9f83 35bfd69 24a9f83 35bfd69 24a9f83 35bfd69 24a9f83 35bfd69 24a9f83 35bfd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import gradio as gr
import base64
import os
from openai import OpenAI
def generate_systematic_review(api_key, pdf_files):
"""
Generate a systematic review of the uploaded PDF files using OpenAI's API.
Args:
api_key (str): OpenAI API key provided by the user
pdf_files (list): List of uploaded PDF files
Returns:
str: Generated systematic review text
"""
if not api_key.strip():
return """
<div class="error-message">
<h3>Error</h3>
<p>Please provide a valid OpenAI API key.</p>
</div>
"""
if not pdf_files:
return """
<div class="error-message">
<h3>Error</h3>
<p>Please upload at least one PDF file.</p>
</div>
"""
try:
# Initialize OpenAI client with the provided API key
client = OpenAI(api_key=api_key)
# Create a list to hold file inputs for the API
file_inputs = []
# List of uploaded file names for display
file_names = []
# Process each uploaded PDF file
for pdf_file in pdf_files:
file_name = os.path.basename(pdf_file.name)
file_names.append(file_name)
# Read the file as binary data
with open(pdf_file.name, "rb") as f:
binary_data = f.read()
# Encode the binary data to base64
base64_encoded = base64.b64encode(binary_data).decode('utf-8')
# Create proper data URL with MIME type
data_url = f"data:application/pdf;base64,{base64_encoded}"
# Add to file inputs
file_inputs.append({
"type": "input_file",
"filename": file_name,
"file_data": data_url
})
# System prompt defining systematic review steps
system_prompt = """Step 1: Identify a Research Field
The first step in writing a systematic review paper is to identify a research field. This involves selecting a specific area of study that you are interested in and want to explore further.
Step 2: Generate a Research Question
Once you have identified your research field, the next step is to generate a research question. This question should be specific, measurable, achievable, relevant, and time-bound (SMART).
Step 3: Create a Protocol
After generating your research question, the next step is to create a protocol. A protocol is a detailed plan of how you will conduct your research, including the methods you will use, the data you will collect, and the analysis you will perform.
Step 4: Evaluate Relevant Literature
The fourth step is to evaluate relevant literature. This involves searching for and reviewing existing studies related to your research question. You should critically evaluate the quality of these studies and identify any gaps or limitations in the current literature.
Step 5: Investigate Sources for Answers
The fifth step is to investigate sources for answers. This involves searching for and accessing relevant data and information that will help you answer your research question. This may include conducting interviews, surveys, or experiments, or analyzing existing data.
Step 6: Collect Data as per Protocol
The sixth step is to collect data as per protocol. This involves implementing the methods outlined in your protocol and collecting the data specified. You should ensure that your data collection methods are rigorous and reliable.
Step 7: Data Extraction
The seventh step is to extract the data. This involves organizing and analyzing the data you have collected, and extracting the relevant information that will help you answer your research question.
Step 8: Critical Analysis of Results
The eighth step is to conduct a critical analysis of your results. This involves interpreting your findings, identifying patterns and trends, and drawing conclusions based on your data.
Step 9: Interpreting Derivations
The ninth step is to interpret the derivations. This involves taking the conclusions you have drawn from your data and interpreting them in the context of your research question.
Step 10: Concluding Statements
The final step is to make concluding statements. This involves summarizing your findings and drawing conclusions based on your research. You should also provide recommendations for future research and implications for practice.
By following these steps, you can ensure that your systematic review paper is well-written, well-organized, and provides valuable insights into your research question.
"""
# Make the API call to OpenAI
response = client.responses.create(
model="gpt-4.1",
input=[
{
"role": "system",
"content": [
{
"type": "input_text",
"text": system_prompt
}
]
},
{
"role": "user",
"content": [
{
"type": "input_text",
"text": "Please generate the systematic review of these papers (include also important new generated tables)"
},
*file_inputs
]
}
],
temperature=0.7,
max_output_tokens=4000,
top_p=1
)
# Extract and return the review text from the response
if hasattr(response, 'content') and len(response.content) > 0:
result_text = ""
for item in response.content:
if hasattr(item, 'text'):
result_text += item.text
if result_text:
# Format the file names for display
files_html = ""
for name in file_names:
files_html += f'<div class="file-pill"><span class="file-icon">π</span> {name} <span class="file-x">Γ</span></div>'
# Create a nicely formatted response interface
return f"""
<div class="response-container">
<div class="files-container">
{files_html}
</div>
<div class="assistant-label">Assistant</div>
<div class="review-content">
<p>Here is a <strong>systematic review</strong> of the provided papers:</p>
<hr>
{result_text}
</div>
</div>
"""
return """
<div class="error-message">
<h3>Error</h3>
<p>Failed to generate a systematic review. Please try again.</p>
</div>
"""
except Exception as e:
return f"""
<div class="error-message">
<h3>Error</h3>
<p>An error occurred: {str(e)}</p>
</div>
"""
# Custom CSS for the interface
custom_css = """
.gradio-container {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
}
.response-container {
background-color: #f9f9f9;
border-radius: 8px;
padding: 15px;
margin-top: 10px;
font-size: 16px;
}
.files-container {
display: flex;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 15px;
}
.file-pill {
background-color: #f0f0f0;
border-radius: 16px;
padding: 4px 12px;
display: flex;
align-items: center;
gap: 5px;
font-size: 14px;
}
.file-icon {
margin-right: 4px;
}
.file-x {
margin-left: 4px;
color: #888;
}
.assistant-label {
font-weight: 600;
margin-bottom: 5px;
color: #444;
}
.review-content {
background-color: white;
border-radius: 8px;
padding: 15px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
}
.review-content h1, .review-content h2, .review-content h3 {
margin-top: 20px;
margin-bottom: 10px;
font-weight: 600;
}
.review-content h1 {
font-size: 24px;
border-bottom: 1px solid #eee;
padding-bottom: 10px;
}
.review-content h2 {
font-size: 20px;
}
.review-content h3 {
font-size: 18px;
}
.review-content p {
margin-bottom: 15px;
line-height: 1.5;
}
.review-content hr {
margin: 20px 0;
border: 0;
border-top: 1px solid #eee;
}
.review-content table {
border-collapse: collapse;
width: 100%;
margin: 20px 0;
}
.review-content th, .review-content td {
border: 1px solid #ddd;
padding: 8px 12px;
text-align: left;
}
.review-content th {
background-color: #f2f2f2;
font-weight: 600;
}
.review-content tr:nth-child(even) {
background-color: #f9f9f9;
}
.error-message {
background-color: #fff0f0;
border-left: 4px solid #ff5252;
padding: 15px;
border-radius: 4px;
margin-top: 10px;
}
.error-message h3 {
color: #d32f2f;
margin-top: 0;
margin-bottom: 10px;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, title="Systematic Review Generator") as app:
gr.Markdown("# Systematic Review Generator")
gr.Markdown("Upload PDF files and generate a systematic review using OpenAI's GPT-4.1 model.")
with gr.Row():
with gr.Column(scale=1):
with gr.Box():
gr.Markdown("### Settings")
api_key = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your OpenAI API key...",
type="password"
)
pdf_files = gr.File(
label="Upload PDF Files",
file_count="multiple",
file_types=[".pdf"]
)
model_info = gr.Markdown("""
**Model**: gpt-4.1
**Tokens**: 4000 (max output)
**Temperature**: 0.7
""")
submit_btn = gr.Button("Generate Systematic Review", variant="primary", size="lg")
with gr.Accordion("How to Use", open=False):
gr.Markdown("""
1. Enter your OpenAI API key in the field above
2. Upload two or more PDF research papers
3. Click "Generate Systematic Review"
4. The systematic review will be displayed in the output area
**Note**: This application requires a valid OpenAI API key with access to the GPT-4.1 model.
Your API key is not stored and is only used to make the API call to OpenAI.
Please be aware that large PDF files may cause issues with the API due to size limits.
""")
with gr.Column(scale=2):
# HTML output for better formatting
output = gr.HTML(label="Generated Review")
# Set up the event handler
submit_btn.click(
fn=generate_systematic_review,
inputs=[api_key, pdf_files],
outputs=output
)
if __name__ == "__main__":
app.launch() |