Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,31 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
|
|
4 |
|
5 |
-
# Load
|
6 |
-
|
7 |
-
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
# Set device
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
def predict_sentiment(text):
|
22 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
23 |
|
@@ -26,21 +34,19 @@ def predict_sentiment(text):
|
|
26 |
|
27 |
predicted_class = torch.argmax(logits, dim=1).item()
|
28 |
label = id2label[predicted_class]
|
29 |
-
|
30 |
-
# Optional: add confidence score
|
31 |
probs = torch.nn.functional.softmax(logits, dim=1)
|
32 |
confidence = probs[0][predicted_class].item()
|
33 |
|
34 |
return f"{label} (Confidence: {confidence:.2f})"
|
35 |
|
36 |
-
#
|
37 |
interface = gr.Interface(
|
38 |
fn=predict_sentiment,
|
39 |
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence to analyze sentiment..."),
|
40 |
outputs="text",
|
41 |
-
title="Twitter Sentiment Classifier",
|
42 |
-
description="This app uses a
|
43 |
)
|
44 |
|
45 |
-
# Launch the app
|
46 |
interface.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
|
6 |
+
# Load PEFT adapter config
|
7 |
+
adapter_name = "shukdevdatta123/twitter-distilbert-base-uncased-sentiment-analysis-lora-text-classification"
|
8 |
+
config = PeftConfig.from_pretrained(adapter_name)
|
|
|
9 |
|
10 |
+
# Load base model and tokenizer
|
11 |
+
base_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
13 |
+
|
14 |
+
# Load the LoRA adapter into the base model
|
15 |
+
model = PeftModel.from_pretrained(base_model, adapter_name)
|
16 |
|
17 |
# Set device
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
model.to(device)
|
20 |
+
model.eval()
|
21 |
+
|
22 |
+
# Label mapping
|
23 |
+
id2label = {
|
24 |
+
0: "Negative",
|
25 |
+
1: "Positive"
|
26 |
+
}
|
27 |
|
28 |
+
# Prediction function
|
29 |
def predict_sentiment(text):
|
30 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
31 |
|
|
|
34 |
|
35 |
predicted_class = torch.argmax(logits, dim=1).item()
|
36 |
label = id2label[predicted_class]
|
37 |
+
|
|
|
38 |
probs = torch.nn.functional.softmax(logits, dim=1)
|
39 |
confidence = probs[0][predicted_class].item()
|
40 |
|
41 |
return f"{label} (Confidence: {confidence:.2f})"
|
42 |
|
43 |
+
# Gradio UI
|
44 |
interface = gr.Interface(
|
45 |
fn=predict_sentiment,
|
46 |
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence to analyze sentiment..."),
|
47 |
outputs="text",
|
48 |
+
title="Twitter Sentiment Classifier (LoRA + DistilBERT)",
|
49 |
+
description="This app uses a DistilBERT model with LoRA adapters to classify tweet sentiment as Positive or Negative."
|
50 |
)
|
51 |
|
|
|
52 |
interface.launch()
|