Update app.py
Browse files
app.py
CHANGED
|
@@ -7,506 +7,134 @@ import os
|
|
| 7 |
import io
|
| 8 |
from transformers import pipeline
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
-
import
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
#
|
| 22 |
-
# Note: You'll also need to configure this in your Streamlit config file or environment
|
| 23 |
-
@st.cache_data
|
| 24 |
-
def get_config():
|
| 25 |
-
return {"maxUploadSize": 1024} # 1GB in MB
|
| 26 |
-
|
| 27 |
-
# Function to convert video to audio with progress tracking
|
| 28 |
-
def video_to_audio(video_file, progress_callback=None):
|
| 29 |
-
"""Convert video to audio with memory optimization"""
|
| 30 |
-
try:
|
| 31 |
-
# Load the video using moviepy with memory optimization
|
| 32 |
-
video = mp.VideoFileClip(video_file)
|
| 33 |
-
|
| 34 |
-
# Extract audio
|
| 35 |
-
audio = video.audio
|
| 36 |
-
temp_audio_path = tempfile.mktemp(suffix=".mp3")
|
| 37 |
-
|
| 38 |
-
# Write the audio to a file with progress tracking
|
| 39 |
-
if progress_callback:
|
| 40 |
-
progress_callback(50) # 50% progress
|
| 41 |
-
|
| 42 |
-
audio.write_audiofile(temp_audio_path, verbose=False, logger=None)
|
| 43 |
-
|
| 44 |
-
# Clean up video object to free memory
|
| 45 |
-
audio.close()
|
| 46 |
-
video.close()
|
| 47 |
-
del video, audio
|
| 48 |
-
gc.collect()
|
| 49 |
-
|
| 50 |
-
if progress_callback:
|
| 51 |
-
progress_callback(100) # 100% progress
|
| 52 |
-
|
| 53 |
-
return temp_audio_path
|
| 54 |
-
except Exception as e:
|
| 55 |
-
st.error(f"Error converting video to audio: {str(e)}")
|
| 56 |
-
return None
|
| 57 |
-
|
| 58 |
-
# Function to convert MP3 audio to WAV
|
| 59 |
def convert_mp3_to_wav(mp3_file):
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
# Initialize recognizer
|
| 85 |
-
recognizer = sr.Recognizer()
|
| 86 |
-
|
| 87 |
-
# Load audio and get duration
|
| 88 |
-
audio_segment = AudioSegment.from_wav(audio_file)
|
| 89 |
-
duration = len(audio_segment) / 1000 # Duration in seconds
|
| 90 |
-
|
| 91 |
transcriptions = []
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
# Extract chunk
|
| 102 |
-
chunk = audio_segment[start_time:end_time]
|
| 103 |
-
|
| 104 |
-
# Save chunk temporarily
|
| 105 |
-
chunk_path = tempfile.mktemp(suffix=".wav")
|
| 106 |
-
chunk.export(chunk_path, format="wav")
|
| 107 |
-
|
| 108 |
-
# Transcribe chunk
|
| 109 |
-
try:
|
| 110 |
-
with sr.AudioFile(chunk_path) as source:
|
| 111 |
-
audio_data = recognizer.record(source)
|
| 112 |
-
text = recognizer.recognize_google(audio_data)
|
| 113 |
-
transcriptions.append(text)
|
| 114 |
-
except (sr.UnknownValueError, sr.RequestError):
|
| 115 |
-
transcriptions.append(f"[Chunk {i+1}: Audio could not be transcribed]")
|
| 116 |
-
|
| 117 |
-
# Clean up chunk file
|
| 118 |
-
os.remove(chunk_path)
|
| 119 |
-
|
| 120 |
-
# Update progress
|
| 121 |
-
progress = int(((i + 1) / num_chunks) * 100)
|
| 122 |
-
st.progress(progress / 100, text=f"Transcribing... {progress}%")
|
| 123 |
-
|
| 124 |
-
else:
|
| 125 |
-
# For shorter audio, transcribe directly
|
| 126 |
-
with sr.AudioFile(audio_file) as source:
|
| 127 |
-
audio_data = recognizer.record(source)
|
| 128 |
text = recognizer.recognize_google(audio_data)
|
| 129 |
transcriptions.append(text)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
del audio_segment
|
| 136 |
-
gc.collect()
|
| 137 |
-
|
| 138 |
-
return full_transcription
|
| 139 |
-
|
| 140 |
-
except sr.UnknownValueError:
|
| 141 |
-
return "Audio could not be understood."
|
| 142 |
-
except sr.RequestError as e:
|
| 143 |
-
return f"Could not request results from Google Speech Recognition service: {str(e)}"
|
| 144 |
-
except Exception as e:
|
| 145 |
-
return f"Error during transcription: {str(e)}"
|
| 146 |
-
|
| 147 |
-
# Function to perform emotion detection using Hugging Face transformers
|
| 148 |
-
@st.cache_resource
|
| 149 |
-
def load_emotion_model():
|
| 150 |
-
"""Load emotion detection model (cached)"""
|
| 151 |
-
return pipeline("text-classification",
|
| 152 |
-
model="j-hartmann/emotion-english-distilroberta-base",
|
| 153 |
-
return_all_scores=True)
|
| 154 |
|
|
|
|
| 155 |
def detect_emotion(text):
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
if emotion in all_emotions:
|
| 173 |
-
all_emotions[emotion] = (all_emotions[emotion] + score) / 2
|
| 174 |
-
else:
|
| 175 |
-
all_emotions[emotion] = score
|
| 176 |
-
|
| 177 |
-
return all_emotions
|
| 178 |
-
else:
|
| 179 |
-
result = emotion_pipeline(text)
|
| 180 |
-
emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
|
| 181 |
-
return emotions
|
| 182 |
-
|
| 183 |
-
except Exception as e:
|
| 184 |
-
st.error(f"Error in emotion detection: {str(e)}")
|
| 185 |
-
return {"error": "Could not analyze emotions"}
|
| 186 |
-
|
| 187 |
-
# Function to visualize emotions
|
| 188 |
-
def plot_emotions(emotions):
|
| 189 |
-
"""Create a bar chart of emotions"""
|
| 190 |
-
if "error" in emotions:
|
| 191 |
-
return None
|
| 192 |
-
|
| 193 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 194 |
-
emotions_sorted = dict(sorted(emotions.items(), key=lambda x: x[1], reverse=True))
|
| 195 |
-
|
| 196 |
-
colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8']
|
| 197 |
-
bars = ax.bar(emotions_sorted.keys(), emotions_sorted.values(),
|
| 198 |
-
color=colors[:len(emotions_sorted)])
|
| 199 |
-
|
| 200 |
-
ax.set_xlabel('Emotions')
|
| 201 |
-
ax.set_ylabel('Confidence Score')
|
| 202 |
-
ax.set_title('Emotion Detection Results')
|
| 203 |
-
ax.set_ylim(0, 1)
|
| 204 |
-
|
| 205 |
-
# Add value labels on bars
|
| 206 |
-
for bar in bars:
|
| 207 |
-
height = bar.get_height()
|
| 208 |
-
ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
|
| 209 |
-
f'{height:.3f}', ha='center', va='bottom')
|
| 210 |
-
|
| 211 |
-
plt.xticks(rotation=45)
|
| 212 |
-
plt.tight_layout()
|
| 213 |
-
return fig
|
| 214 |
|
| 215 |
# Streamlit app layout
|
| 216 |
-
st.title("
|
| 217 |
-
st.write("Upload video
|
| 218 |
-
|
| 219 |
-
# Display file size information
|
| 220 |
-
st.info("📁 **File Size Limits**: Video files up to 1GB, Audio files up to 500MB")
|
| 221 |
-
|
| 222 |
-
# Add instructions for large file uploads
|
| 223 |
-
with st.expander("📋 Instructions for Large Files"):
|
| 224 |
-
st.write("""
|
| 225 |
-
**For optimal performance with large files:**
|
| 226 |
-
1. Ensure stable internet connection
|
| 227 |
-
2. Be patient - large files take time to process
|
| 228 |
-
3. Don't close the browser tab during processing
|
| 229 |
-
4. For very large files, consider splitting them beforehand
|
| 230 |
-
|
| 231 |
-
**Supported formats:**
|
| 232 |
-
- **Video**: MP4, MOV, AVI
|
| 233 |
-
- **Audio**: WAV, MP3
|
| 234 |
-
""")
|
| 235 |
-
|
| 236 |
-
# Create tabs to separate video and audio uploads
|
| 237 |
-
tab1, tab2 = st.tabs(["📹 Video Upload", "🎵 Audio Upload"])
|
| 238 |
|
| 239 |
-
|
| 240 |
-
st.header("Video File Processing")
|
| 241 |
-
|
| 242 |
-
# File uploader for video with increased size limit
|
| 243 |
-
uploaded_video = st.file_uploader(
|
| 244 |
-
"Upload Video File",
|
| 245 |
-
type=["mp4", "mov", "avi"],
|
| 246 |
-
help="Maximum file size: 1GB"
|
| 247 |
-
)
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
# Show video preview for smaller files
|
| 255 |
-
if file_size_mb < 100: # Only show preview for files under 100MB
|
| 256 |
-
st.video(uploaded_video)
|
| 257 |
-
|
| 258 |
-
# Save the uploaded video file temporarily
|
| 259 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_video:
|
| 260 |
tmp_video.write(uploaded_video.read())
|
| 261 |
tmp_video_path = tmp_video.name
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
# Convert the extracted MP3 audio to WAV
|
| 286 |
-
wav_audio_file = convert_mp3_to_wav(audio_file)
|
| 287 |
-
|
| 288 |
-
if wav_audio_file is None:
|
| 289 |
-
st.error("Failed to convert audio format.")
|
| 290 |
-
st.stop()
|
| 291 |
-
|
| 292 |
-
status_text.text("Step 3/4: Transcribing audio to text...")
|
| 293 |
-
progress_bar.progress(60)
|
| 294 |
-
|
| 295 |
-
# Transcribe audio to text
|
| 296 |
-
transcription = transcribe_audio(wav_audio_file)
|
| 297 |
-
|
| 298 |
-
status_text.text("Step 4/4: Analyzing emotions...")
|
| 299 |
-
progress_bar.progress(90)
|
| 300 |
-
|
| 301 |
-
# Emotion detection
|
| 302 |
-
emotions = detect_emotion(transcription)
|
| 303 |
-
|
| 304 |
-
progress_bar.progress(100)
|
| 305 |
-
status_text.text("✅ Processing complete!")
|
| 306 |
-
|
| 307 |
-
# Display results
|
| 308 |
-
st.success("Analysis completed successfully!")
|
| 309 |
-
|
| 310 |
-
# Show the transcription
|
| 311 |
-
st.subheader("📝 Transcription")
|
| 312 |
-
st.text_area("", transcription, height=300, key="video_transcription")
|
| 313 |
-
|
| 314 |
-
# Show emotions
|
| 315 |
-
st.subheader("😊 Emotion Analysis")
|
| 316 |
-
col1, col2 = st.columns([1, 1])
|
| 317 |
-
|
| 318 |
-
with col1:
|
| 319 |
-
st.write("**Detected Emotions:**")
|
| 320 |
-
for emotion, score in emotions.items():
|
| 321 |
-
st.write(f"- **{emotion.title()}**: {score:.3f}")
|
| 322 |
-
|
| 323 |
-
with col2:
|
| 324 |
-
fig = plot_emotions(emotions)
|
| 325 |
-
if fig:
|
| 326 |
-
st.pyplot(fig)
|
| 327 |
-
|
| 328 |
-
# Store results in session state
|
| 329 |
-
st.session_state.video_transcription = transcription
|
| 330 |
-
st.session_state.video_emotions = emotions
|
| 331 |
-
|
| 332 |
-
# Store the audio file as a BytesIO object in memory
|
| 333 |
-
with open(wav_audio_file, "rb") as f:
|
| 334 |
-
audio_data = f.read()
|
| 335 |
-
st.session_state.video_wav_audio_file = io.BytesIO(audio_data)
|
| 336 |
-
|
| 337 |
-
# Cleanup temporary files
|
| 338 |
-
os.remove(tmp_video_path)
|
| 339 |
-
os.remove(audio_file)
|
| 340 |
-
os.remove(wav_audio_file)
|
| 341 |
-
|
| 342 |
-
except Exception as e:
|
| 343 |
-
st.error(f"An error occurred during processing: {str(e)}")
|
| 344 |
-
# Clean up files in case of error
|
| 345 |
-
try:
|
| 346 |
-
os.remove(tmp_video_path)
|
| 347 |
-
if 'audio_file' in locals() and audio_file:
|
| 348 |
-
os.remove(audio_file)
|
| 349 |
-
if 'wav_audio_file' in locals() and wav_audio_file:
|
| 350 |
-
os.remove(wav_audio_file)
|
| 351 |
-
except:
|
| 352 |
-
pass
|
| 353 |
-
|
| 354 |
-
# Check if results are stored in session state
|
| 355 |
-
if 'video_transcription' in st.session_state and 'video_wav_audio_file' in st.session_state:
|
| 356 |
-
st.subheader("📥 Download Results")
|
| 357 |
-
|
| 358 |
-
col1, col2, col3 = st.columns(3)
|
| 359 |
-
|
| 360 |
-
with col1:
|
| 361 |
-
# Provide the audio file to the user for playback
|
| 362 |
-
st.audio(st.session_state.video_wav_audio_file, format='audio/wav')
|
| 363 |
-
|
| 364 |
-
with col2:
|
| 365 |
-
# Downloadable transcription file
|
| 366 |
-
st.download_button(
|
| 367 |
-
label="📄 Download Transcription",
|
| 368 |
-
data=st.session_state.video_transcription,
|
| 369 |
-
file_name="video_transcription.txt",
|
| 370 |
-
mime="text/plain"
|
| 371 |
-
)
|
| 372 |
-
|
| 373 |
-
with col3:
|
| 374 |
-
# Downloadable audio file
|
| 375 |
-
st.download_button(
|
| 376 |
-
label="🎵 Download Audio",
|
| 377 |
-
data=st.session_state.video_wav_audio_file,
|
| 378 |
-
file_name="extracted_audio.wav",
|
| 379 |
-
mime="audio/wav"
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
with tab2:
|
| 383 |
-
st.header("Audio File Processing")
|
| 384 |
-
|
| 385 |
-
# File uploader for audio
|
| 386 |
-
uploaded_audio = st.file_uploader(
|
| 387 |
-
"Upload Audio File",
|
| 388 |
-
type=["wav", "mp3"],
|
| 389 |
-
help="Maximum file size: 500MB"
|
| 390 |
-
)
|
| 391 |
-
|
| 392 |
-
if uploaded_audio is not None:
|
| 393 |
-
# Display file information
|
| 394 |
-
file_size_mb = uploaded_audio.size / (1024 * 1024)
|
| 395 |
-
st.info(f"📊 **File Info**: {uploaded_audio.name} ({file_size_mb:.1f} MB)")
|
| 396 |
-
|
| 397 |
-
# Show audio player
|
| 398 |
-
st.audio(uploaded_audio)
|
| 399 |
-
|
| 400 |
-
# Save the uploaded audio file temporarily
|
| 401 |
with tempfile.NamedTemporaryFile(delete=False) as tmp_audio:
|
| 402 |
tmp_audio.write(uploaded_audio.read())
|
| 403 |
tmp_audio_path = tmp_audio.name
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
with
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
if wav_audio_file is None:
|
| 423 |
-
st.error("Failed to process audio file.")
|
| 424 |
-
st.stop()
|
| 425 |
-
|
| 426 |
-
status_text.text("Step 2/3: Transcribing audio to text...")
|
| 427 |
-
progress_bar.progress(40)
|
| 428 |
-
|
| 429 |
-
# Transcribe audio to text
|
| 430 |
-
transcription = transcribe_audio(wav_audio_file)
|
| 431 |
-
|
| 432 |
-
status_text.text("Step 3/3: Analyzing emotions...")
|
| 433 |
-
progress_bar.progress(80)
|
| 434 |
-
|
| 435 |
-
# Emotion detection
|
| 436 |
-
emotions = detect_emotion(transcription)
|
| 437 |
-
|
| 438 |
-
progress_bar.progress(100)
|
| 439 |
-
status_text.text("✅ Processing complete!")
|
| 440 |
-
|
| 441 |
-
# Display results
|
| 442 |
-
st.success("Analysis completed successfully!")
|
| 443 |
-
|
| 444 |
-
# Show the transcription
|
| 445 |
-
st.subheader("📝 Transcription")
|
| 446 |
-
st.text_area("", transcription, height=300, key="audio_transcription")
|
| 447 |
-
|
| 448 |
-
# Show emotions
|
| 449 |
-
st.subheader("😊 Emotion Analysis")
|
| 450 |
-
col1, col2 = st.columns([1, 1])
|
| 451 |
-
|
| 452 |
-
with col1:
|
| 453 |
-
st.write("**Detected Emotions:**")
|
| 454 |
-
for emotion, score in emotions.items():
|
| 455 |
-
st.write(f"- **{emotion.title()}**: {score:.3f}")
|
| 456 |
-
|
| 457 |
-
with col2:
|
| 458 |
-
fig = plot_emotions(emotions)
|
| 459 |
-
if fig:
|
| 460 |
-
st.pyplot(fig)
|
| 461 |
-
|
| 462 |
-
# Store results in session state
|
| 463 |
-
st.session_state.audio_transcription = transcription
|
| 464 |
-
st.session_state.audio_emotions = emotions
|
| 465 |
-
|
| 466 |
-
# Store the audio file as a BytesIO object in memory
|
| 467 |
-
with open(wav_audio_file, "rb") as f:
|
| 468 |
-
audio_data = f.read()
|
| 469 |
-
st.session_state.audio_wav_audio_file = io.BytesIO(audio_data)
|
| 470 |
-
|
| 471 |
-
# Cleanup temporary audio file
|
| 472 |
-
os.remove(tmp_audio_path)
|
| 473 |
-
if wav_audio_file != tmp_audio_path:
|
| 474 |
-
os.remove(wav_audio_file)
|
| 475 |
-
|
| 476 |
-
except Exception as e:
|
| 477 |
-
st.error(f"An error occurred during processing: {str(e)}")
|
| 478 |
-
# Clean up files in case of error
|
| 479 |
-
try:
|
| 480 |
-
os.remove(tmp_audio_path)
|
| 481 |
-
if 'wav_audio_file' in locals() and wav_audio_file and wav_audio_file != tmp_audio_path:
|
| 482 |
-
os.remove(wav_audio_file)
|
| 483 |
-
except:
|
| 484 |
-
pass
|
| 485 |
-
|
| 486 |
-
# Check if results are stored in session state
|
| 487 |
-
if 'audio_transcription' in st.session_state and 'audio_wav_audio_file' in st.session_state:
|
| 488 |
-
st.subheader("📥 Download Results")
|
| 489 |
-
|
| 490 |
-
col1, col2 = st.columns(2)
|
| 491 |
-
|
| 492 |
-
with col1:
|
| 493 |
-
# Downloadable transcription file
|
| 494 |
-
st.download_button(
|
| 495 |
-
label="📄 Download Transcription",
|
| 496 |
-
data=st.session_state.audio_transcription,
|
| 497 |
-
file_name="audio_transcription.txt",
|
| 498 |
-
mime="text/plain"
|
| 499 |
-
)
|
| 500 |
-
|
| 501 |
-
with col2:
|
| 502 |
-
# Downloadable audio file
|
| 503 |
-
st.download_button(
|
| 504 |
-
label="🎵 Download Processed Audio",
|
| 505 |
-
data=st.session_state.audio_wav_audio_file,
|
| 506 |
-
file_name="processed_audio.wav",
|
| 507 |
-
mime="audio/wav"
|
| 508 |
-
)
|
| 509 |
-
|
| 510 |
-
# Footer
|
| 511 |
-
st.markdown("---")
|
| 512 |
-
st.markdown("Built with ❤️ using Streamlit, MoviePy, and HuggingFace Transformers")
|
|
|
|
| 7 |
import io
|
| 8 |
from transformers import pipeline
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
+
import librosa
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
# Function to convert video to audio
|
| 14 |
+
def video_to_audio(video_file):
|
| 15 |
+
video = mp.VideoFileClip(video_file)
|
| 16 |
+
audio = video.audio
|
| 17 |
+
temp_audio_path = tempfile.mktemp(suffix=".mp3")
|
| 18 |
+
audio.write_audiofile(temp_audio_path)
|
| 19 |
+
return temp_audio_path
|
| 20 |
+
|
| 21 |
+
# Function to convert MP3 to WAV
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def convert_mp3_to_wav(mp3_file):
|
| 23 |
+
audio = AudioSegment.from_mp3(mp3_file)
|
| 24 |
+
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
| 25 |
+
audio.export(temp_wav_path, format="wav")
|
| 26 |
+
return temp_wav_path
|
| 27 |
+
|
| 28 |
+
# Function to transcribe audio with chunking for large files
|
| 29 |
+
def transcribe_audio(audio_file):
|
| 30 |
+
audio = AudioSegment.from_wav(audio_file)
|
| 31 |
+
duration = len(audio) / 1000 # Duration in seconds
|
| 32 |
+
chunk_length = 60 # 60-second chunks
|
| 33 |
+
recognizer = sr.Recognizer()
|
| 34 |
+
|
| 35 |
+
if duration <= chunk_length:
|
| 36 |
+
with sr.AudioFile(audio_file) as source:
|
| 37 |
+
audio_data = recognizer.record(source)
|
| 38 |
+
try:
|
| 39 |
+
text = recognizer.recognize_google(audio_data)
|
| 40 |
+
return text
|
| 41 |
+
except sr.UnknownValueError:
|
| 42 |
+
return "Audio could not be understood."
|
| 43 |
+
except sr.RequestError:
|
| 44 |
+
return "Could not request results from Google Speech Recognition service."
|
| 45 |
+
else:
|
| 46 |
+
num_chunks = int(duration // chunk_length) + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
transcriptions = []
|
| 48 |
+
for i in range(num_chunks):
|
| 49 |
+
start_time = i * chunk_length * 1000 # in milliseconds
|
| 50 |
+
end_time = min((i + 1) * chunk_length * 1000, len(audio))
|
| 51 |
+
chunk = audio[start_time:end_time]
|
| 52 |
+
frame_data = chunk.raw_data
|
| 53 |
+
sample_rate = audio.frame_rate
|
| 54 |
+
sample_width = audio.sample_width
|
| 55 |
+
audio_data = sr.AudioData(frame_data, sample_rate, sample_width)
|
| 56 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
text = recognizer.recognize_google(audio_data)
|
| 58 |
transcriptions.append(text)
|
| 59 |
+
except sr.UnknownValueError:
|
| 60 |
+
transcriptions.append("[Audio could not be understood.]")
|
| 61 |
+
except sr.RequestError:
|
| 62 |
+
transcriptions.append("[Could not request results.]")
|
| 63 |
+
return " ".join(transcriptions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Function to detect emotions
|
| 66 |
def detect_emotion(text):
|
| 67 |
+
emotion_pipeline = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
|
| 68 |
+
result = emotion_pipeline(text)
|
| 69 |
+
emotions = {emotion['label']: emotion['score'] for emotion in result[0]}
|
| 70 |
+
return emotions
|
| 71 |
+
|
| 72 |
+
# Function to plot audio waveform
|
| 73 |
+
def plot_waveform(audio_data, duration=10):
|
| 74 |
+
audio_data.seek(0)
|
| 75 |
+
y, sr = librosa.load(audio_data, sr=None, duration=duration)
|
| 76 |
+
plt.figure(figsize=(10, 4))
|
| 77 |
+
time = np.linspace(0, len(y)/sr, len(y))
|
| 78 |
+
plt.plot(time, y)
|
| 79 |
+
plt.title(f"Audio Waveform (first {duration} seconds)")
|
| 80 |
+
plt.xlabel("Time (s)")
|
| 81 |
+
plt.ylabel("Amplitude")
|
| 82 |
+
st.pyplot(plt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Streamlit app layout
|
| 85 |
+
st.title("Video and Audio to Text Transcription with Emotion Detection and Visualization")
|
| 86 |
+
st.write("Upload a video or audio file to transcribe it, detect emotions, and visualize the audio waveform.")
|
| 87 |
+
st.write("**Note:** To upload files up to 1GB, run the app with: `streamlit run app.py --server.maxUploadSize=1024`")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
tab = st.selectbox("Select file type", ["Video", "Audio"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
if tab == "Video":
|
| 92 |
+
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi"])
|
| 93 |
+
if uploaded_video:
|
| 94 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_video:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
tmp_video.write(uploaded_video.read())
|
| 96 |
tmp_video_path = tmp_video.name
|
| 97 |
+
if st.button("Analyze Video"):
|
| 98 |
+
with st.spinner("Processing video..."):
|
| 99 |
+
audio_file = video_to_audio(tmp_video_path)
|
| 100 |
+
wav_audio_file = convert_mp3_to_wav(audio_file)
|
| 101 |
+
transcription = transcribe_audio(wav_audio_file)
|
| 102 |
+
st.text_area("Transcription", transcription, height=300)
|
| 103 |
+
emotions = detect_emotion(transcription)
|
| 104 |
+
st.write(f"Detected Emotions: {emotions}")
|
| 105 |
+
with open(wav_audio_file, "rb") as f:
|
| 106 |
+
audio_data = io.BytesIO(f.read())
|
| 107 |
+
st.session_state.wav_audio_file = audio_data
|
| 108 |
+
plot_waveform(st.session_state.wav_audio_file)
|
| 109 |
+
os.remove(tmp_video_path)
|
| 110 |
+
os.remove(audio_file)
|
| 111 |
+
os.remove(wav_audio_file)
|
| 112 |
+
if 'wav_audio_file' in st.session_state:
|
| 113 |
+
st.audio(st.session_state.wav_audio_file, format='audio/wav')
|
| 114 |
+
st.download_button("Download Transcription", st.session_state.transcription, "transcription.txt", "text/plain")
|
| 115 |
+
st.download_button("Download Audio", st.session_state.wav_audio_file, "converted_audio.wav", "audio/wav")
|
| 116 |
+
|
| 117 |
+
elif tab == "Audio":
|
| 118 |
+
uploaded_audio = st.file_uploader("Upload Audio", type=["wav", "mp3"])
|
| 119 |
+
if uploaded_audio:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
with tempfile.NamedTemporaryFile(delete=False) as tmp_audio:
|
| 121 |
tmp_audio.write(uploaded_audio.read())
|
| 122 |
tmp_audio_path = tmp_audio.name
|
| 123 |
+
if st.button("Analyze Audio"):
|
| 124 |
+
with st.spinner("Processing audio..."):
|
| 125 |
+
wav_audio_file = convert_mp3_to_wav(tmp_audio_path) if uploaded_audio.type == "audio/mpeg" else tmp_audio_path
|
| 126 |
+
transcription = transcribe_audio(wav_audio_file)
|
| 127 |
+
st.text_area("Transcription", transcription, height=300)
|
| 128 |
+
emotions = detect_emotion(transcription)
|
| 129 |
+
st.write(f"Detected Emotions: {emotions}")
|
| 130 |
+
with open(wav_audio_file, "rb") as f:
|
| 131 |
+
audio_data = io.BytesIO(f.read())
|
| 132 |
+
st.session_state.wav_audio_file_audio = audio_data
|
| 133 |
+
plot_waveform(st.session_state.wav_audio_file_audio)
|
| 134 |
+
if uploaded_audio.type == "audio/mpeg":
|
| 135 |
+
os.remove(wav_audio_file)
|
| 136 |
+
os.remove(tmp_audio_path)
|
| 137 |
+
if 'wav_audio_file_audio' in st.session_state:
|
| 138 |
+
st.audio(st.session_state.wav_audio_file_audio, format='audio/wav')
|
| 139 |
+
st.download_button("Download Transcription", st.session_state.transcription_audio, "transcription_audio.txt", "text/plain")
|
| 140 |
+
st.download_button("Download Audio", st.session_state.wav_audio_file_audio, "converted_audio_audio.wav", "audio/wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|