Spaces:
Running
Running
File size: 1,996 Bytes
4760b00 4999708 ba92b2d 47d7c50 c4c3acd 8595d15 47d7c50 8595d15 f8f4a26 4999708 4760b00 4999708 ba92b2d 4999708 ba92b2d 4999708 3220f5e 4999708 3220f5e 4999708 3220f5e 4999708 3220f5e 4999708 f74edeb 3220f5e 4999708 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from bark import SAMPLE_RATE, generate_audio, preload_models
from scipy.io.wavfile import write as write_wav
import tempfile
import torch
from numpy.core.multiarray import scalar
import numpy
# Add NumPy scalar and dtype to safe globals to fix UnpicklingError
torch.serialization.add_safe_globals([scalar, numpy.dtype])
# Preload the models at startup
preload_models()
def generate_speech(reference_audio, text):
"""
Generate speech audio mimicking the voice from the reference audio using Bark.
Parameters:
reference_audio (str): Filepath to the uploaded voice sample.
text (str): Text to convert to speech.
Returns:
str: Path to the generated audio file
"""
# Generate speech using the reference audio and text
audio_array = generate_audio(text, history_prompt=reference_audio)
# Create a temporary file to save the audio
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
temp_file_path = temp_file.name
# Save the audio to the temporary file
write_wav(temp_file_path, SAMPLE_RATE, audio_array)
temp_file.close()
return temp_file_path
# Build the Gradio interface
with gr.Blocks(title="Voice Cloning TTS with Bark") as app:
gr.Markdown("## Voice Cloning Text-to-Speech with Bark")
gr.Markdown("Upload a short voice sample in English, then enter text to hear it in your voice!")
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Upload Your Voice Sample (English)")
text_input = gr.Textbox(label="Enter Text to Convert to Speech", placeholder="e.g., I love chocolate")
generate_btn = gr.Button("Generate Speech")
audio_output = gr.Audio(label="Generated Speech", interactive=False)
# Connect the button to the generation function
generate_btn.click(
fn=generate_speech,
inputs=[audio_input, text_input],
outputs=audio_output
)
# Launch the application
app.launch() |