File size: 17,970 Bytes
3220f5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import os
from pathlib import Path
import librosa
import soundfile as sf
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import warnings
import gc
warnings.filterwarnings("ignore")

class VoiceCloningTTS:
    def __init__(self):
        """Initialize the TTS system with SpeechT5 model"""
        # Use CPU for HF Spaces to avoid memory issues
        self.device = torch.device("cpu")
        print(f"Using device: {self.device}")
        
        try:
            # Load SpeechT5 models with memory optimization
            print("Loading SpeechT5 processor...")
            self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
            
            print("Loading SpeechT5 TTS model...")
            self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
            self.model.to(self.device)
            self.model.eval()  # Set to evaluation mode
            
            print("Loading SpeechT5 vocoder...")
            self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
            self.vocoder.to(self.device)
            self.vocoder.eval()
            
            # Load default speaker embeddings
            print("Loading speaker embeddings...")
            embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
            self.default_speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(self.device)
            
            self.user_speaker_embeddings = None
            self.sample_rate = 16000
            
            print("βœ… TTS system initialized successfully!")
            
        except Exception as e:
            print(f"❌ Error initializing TTS system: {str(e)}")
            raise e
        
    def extract_speaker_embedding(self, audio_path):
        """Extract speaker embedding from uploaded audio"""
        try:
            print(f"Processing audio file: {audio_path}")
            
            # Load and preprocess audio
            waveform, sample_rate = torchaudio.load(audio_path)
            print(f"Original audio shape: {waveform.shape}, sample rate: {sample_rate}")
            
            # Resample if necessary
            if sample_rate != self.sample_rate:
                print(f"Resampling from {sample_rate} to {self.sample_rate}")
                resampler = torchaudio.transforms.Resample(sample_rate, self.sample_rate)
                waveform = resampler(waveform)
            
            # Convert to mono if stereo
            if waveform.shape[0] > 1:
                waveform = torch.mean(waveform, dim=0, keepdim=True)
                print("Converted to mono")
            
            # Ensure minimum length (at least 1 second)
            min_length = self.sample_rate
            if waveform.shape[1] < min_length:
                # Pad with zeros if too short
                padding = min_length - waveform.shape[1]
                waveform = torch.nn.functional.pad(waveform, (0, padding))
                print(f"Padded audio to minimum length")
            
            # Limit maximum length (30 seconds max for memory efficiency)
            max_length = 30 * self.sample_rate
            if waveform.shape[1] > max_length:
                waveform = waveform[:, :max_length]
                print("Truncated audio to 30 seconds")
            
            # Normalize audio
            waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
            
            # Convert to numpy for librosa processing
            audio_numpy = waveform.squeeze().numpy()
            
            print("Extracting audio features...")
            
            # Extract comprehensive audio features
            try:
                # MFCC features (mel-frequency cepstral coefficients)
                mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=13)
                mfcc_mean = np.mean(mfccs, axis=1)
                mfcc_std = np.std(mfccs, axis=1)
                
                # Spectral features
                spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
                spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_numpy, sr=self.sample_rate)
                spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio_numpy, sr=self.sample_rate)
                zero_crossing_rate = librosa.feature.zero_crossing_rate(audio_numpy)
                
                # Pitch features
                pitches, magnitudes = librosa.piptrack(y=audio_numpy, sr=self.sample_rate)
                pitch_mean = np.mean(pitches[pitches > 0]) if np.any(pitches > 0) else 0
                
                # Chroma features
                chroma = librosa.feature.chroma_stft(y=audio_numpy, sr=self.sample_rate)
                chroma_mean = np.mean(chroma, axis=1)
                
                # Combine all features
                features = np.concatenate([
                    mfcc_mean,
                    mfcc_std,
                    [np.mean(spectral_centroids)],
                    [np.mean(spectral_rolloff)],
                    [np.mean(spectral_bandwidth)],
                    [np.mean(zero_crossing_rate)],
                    [pitch_mean],
                    chroma_mean
                ])
                
                print(f"Extracted {len(features)} audio features")
                
            except Exception as e:
                print(f"Error extracting features: {e}")
                # Simple fallback feature extraction
                features = np.array([
                    np.mean(audio_numpy),
                    np.std(audio_numpy),
                    np.max(audio_numpy),
                    np.min(audio_numpy)
                ])
            
            # Create speaker embedding by modifying the default embedding
            base_embedding = self.default_speaker_embeddings.clone()
            
            # Normalize features
            features_normalized = (features - np.mean(features)) / (np.std(features) + 1e-8)
            
            # Create modification vector (pad or truncate to match embedding size)
            embedding_size = base_embedding.shape[1]  # Should be 512
            if len(features_normalized) > embedding_size:
                modification_vector = features_normalized[:embedding_size]
            else:
                modification_vector = np.pad(features_normalized, 
                                           (0, embedding_size - len(features_normalized)), 
                                           'constant', constant_values=0)
            
            modification_tensor = torch.tensor(modification_vector, dtype=torch.float32).to(self.device)
            
            # Apply modifications to create unique speaker embedding
            # Use a smaller modification factor for stability
            speaker_embedding = base_embedding + 0.05 * modification_tensor.unsqueeze(0)
            
            # Normalize the final embedding
            speaker_embedding = torch.nn.functional.normalize(speaker_embedding, p=2, dim=1)
            
            print("βœ… Speaker embedding created successfully!")
            return speaker_embedding, "βœ… Voice profile extracted successfully! You can now generate speech in this voice."
            
        except Exception as e:
            print(f"❌ Error in extract_speaker_embedding: {str(e)}")
            return None, f"❌ Error processing audio: {str(e)}"
    
    def synthesize_speech(self, text, use_cloned_voice=True):
        """Convert text to speech using the specified voice"""
        try:
            if not text.strip():
                return None, "❌ Please enter some text to convert."
            
            # Limit text length for memory efficiency
            if len(text) > 500:
                text = text[:500]
                print("Text truncated to 500 characters for memory efficiency")
            
            print(f"Synthesizing speech for text: '{text[:50]}...'")
            
            # Choose speaker embedding
            if use_cloned_voice and self.user_speaker_embeddings is not None:
                speaker_embeddings = self.user_speaker_embeddings
                voice_type = "your cloned voice"
                print("Using cloned voice")
            else:
                speaker_embeddings = self.default_speaker_embeddings
                voice_type = "default voice"
                print("Using default voice")
            
            # Tokenize text
            inputs = self.processor(text=text, return_tensors="pt")
            input_ids = inputs["input_ids"].to(self.device)
            
            print("Generating speech...")
            
            # Generate speech with memory optimization
            with torch.no_grad():
                # Clear cache before generation
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
                    
                speech = self.model.generate_speech(
                    input_ids, 
                    speaker_embeddings, 
                    vocoder=self.vocoder
                )
            
            # Convert to numpy
            speech_numpy = speech.cpu().numpy()
            
            print(f"Generated audio shape: {speech_numpy.shape}")
            
            # Create temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                sf.write(tmp_file.name, speech_numpy, self.sample_rate)
                print(f"Audio saved to: {tmp_file.name}")
                
                # Clean up memory
                del speech, input_ids
                gc.collect()
                
                return tmp_file.name, f"βœ… Speech generated successfully using {voice_type}!"
                
        except Exception as e:
            print(f"❌ Error in synthesize_speech: {str(e)}")
            return None, f"❌ Error generating speech: {str(e)}"

# Initialize the TTS system
print("πŸš€ Initializing Voice Cloning TTS System...")
tts_system = VoiceCloningTTS()

def process_voice_upload(audio_file):
    """Process uploaded voice file"""
    if audio_file is None:
        return "❌ Please upload an audio file first.", gr.update(interactive=False), gr.update(interactive=False)
    
    try:
        speaker_embedding, message = tts_system.extract_speaker_embedding(audio_file)
        
        if speaker_embedding is not None:
            tts_system.user_speaker_embeddings = speaker_embedding
            return message, gr.update(interactive=True), gr.update(interactive=True)
        else:
            return message, gr.update(interactive=False), gr.update(interactive=False)
    except Exception as e:
        error_msg = f"❌ Error processing audio: {str(e)}"
        return error_msg, gr.update(interactive=False), gr.update(interactive=False)

def generate_speech(text, use_cloned_voice):
    """Generate speech from text"""
    if not text.strip():
        return None, "❌ Please enter some text to convert."
    
    try:
        audio_file, message = tts_system.synthesize_speech(text, use_cloned_voice)
        return audio_file, message
    except Exception as e:
        error_msg = f"❌ Error generating speech: {str(e)}"
        return None, error_msg

def clear_voice_profile():
    """Clear the uploaded voice profile"""
    tts_system.user_speaker_embeddings = None
    return ("πŸ”„ Voice profile cleared. Upload a new audio file to clone a voice.", 
            gr.update(interactive=False), 
            gr.update(interactive=False))

def update_generate_button(text, use_cloned):
    """Update generate button state based on inputs"""
    text_ready = bool(text.strip())
    voice_ready = (not use_cloned) or (tts_system.user_speaker_embeddings is not None)
    return gr.update(interactive=text_ready and voice_ready)

# Create Gradio interface optimized for HF Spaces
with gr.Blocks(
    title="🎀 Voice Cloning TTS System",
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 1000px !important;
        margin: auto !important;
    }
    .header {
        text-align: center;
        margin-bottom: 30px;
        padding: 20px;
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        border-radius: 15px;
        color: white;
    }
    .step-box {
        border: 2px solid #e1e5e9;
        border-radius: 12px;
        padding: 20px;
        margin: 15px 0;
        background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .tips-box {
        background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%);
        border-radius: 12px;
        padding: 20px;
        margin: 20px 0;
        border-left: 5px solid #ff6b6b;
    }
    """
) as demo:
    
    gr.HTML("""
    <div class="header">
        <h1>🎀 AI Voice Cloning TTS System</h1>
        <p>πŸš€ Upload your voice sample and convert any text to speech in YOUR voice!</p>
        <p>✨ Powered by Microsoft SpeechT5 & Advanced Voice Analysis</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML('<div class="step-box"><h3>πŸŽ™οΈ Step 1: Upload Your Voice Sample</h3><p>Record or upload 10-30 seconds of clear English speech</p></div>')
            
            voice_upload = gr.Audio(
                label="πŸ“€ Voice Sample (English)",
                type="filepath",
                sources=["upload", "microphone"],
                format="wav"
            )
            
            upload_status = gr.Textbox(
                label="πŸ“Š Voice Analysis Status",
                interactive=False,
                value="⏳ Please upload an audio file to extract your voice profile.",
                lines=2
            )
            
            clear_btn = gr.Button("πŸ—‘οΈ Clear Voice Profile", variant="secondary", size="sm")
        
        with gr.Column(scale=1):
            gr.HTML('<div class="step-box"><h3>✍️ Step 2: Enter Your Text</h3><p>Type the text you want to convert to speech</p></div>')
            
            text_input = gr.Textbox(
                label="πŸ“ Text to Convert (Max 500 characters)",
                placeholder="Enter the text you want to convert to speech using your cloned voice...",
                lines=5,
                max_lines=8
            )
            
            use_cloned_voice = gr.Checkbox(
                label="🎭 Use My Cloned Voice",
                value=True,
                interactive=False,
                info="Uncheck to use default voice"
            )
            
            generate_btn = gr.Button(
                "🎡 Generate Speech", 
                variant="primary", 
                interactive=False,
                size="lg"
            )
    
    gr.HTML('<div class="step-box"><h3>πŸ”Š Step 3: Your Generated Speech</h3></div>')
    
    with gr.Row():
        with gr.Column():
            output_audio = gr.Audio(
                label="🎧 Generated Speech Audio",
                type="filepath",
                interactive=False
            )
            
            generation_status = gr.Textbox(
                label="⚑ Generation Status",
                interactive=False,
                lines=2
            )
    
    # Tips and information section
    gr.HTML("""
    <div class="tips-box">
        <h3>πŸ’‘ Pro Tips for Best Results:</h3>
        <div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin-top: 15px;">
            <div>
                <h4>🎀 Voice Sample Quality:</h4>
                <ul>
                    <li>Use clear, natural English speech</li>
                    <li>10-30 seconds duration is optimal</li>
                    <li>Minimize background noise</li>
                    <li>Speak at normal pace and volume</li>
                </ul>
            </div>
            <div>
                <h4>πŸ“ Text Guidelines:</h4>
                <ul>
                    <li>English text works best</li>
                    <li>Keep sentences natural and clear</li>
                    <li>Avoid very long paragraphs</li>
                    <li>Punctuation helps with intonation</li>
                </ul>
            </div>
        </div>
        <div style="margin-top: 15px; padding: 10px; background: rgba(255,255,255,0.7); border-radius: 8px;">
            <strong>πŸ”¬ How it works:</strong> The system analyzes your voice's unique characteristics (pitch, tone, formants) 
            and creates a personalized voice profile that's used to generate speech that sounds like you!
        </div>
    </div>
    """)
    
    # Event handlers with proper state management
    voice_upload.change(
        fn=process_voice_upload,
        inputs=[voice_upload],
        outputs=[upload_status, use_cloned_voice, generate_btn]
    )
    
    text_input.change(
        fn=update_generate_button,
        inputs=[text_input, use_cloned_voice],
        outputs=[generate_btn]
    )
    
    use_cloned_voice.change(
        fn=update_generate_button,
        inputs=[text_input, use_cloned_voice],
        outputs=[generate_btn]
    )
    
    generate_btn.click(
        fn=generate_speech,
        inputs=[text_input, use_cloned_voice],
        outputs=[output_audio, generation_status]
    )
    
    clear_btn.click(
        fn=clear_voice_profile,
        outputs=[upload_status, use_cloned_voice, generate_btn]
    )

# Launch configuration for Hugging Face Spaces
if __name__ == "__main__":
    print("🌟 Starting Voice Cloning TTS System on Hugging Face Spaces...")
    demo.launch(
        share=True  # HF Spaces handles sharing automatically
    )