Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from bark import SAMPLE_RATE, generate_audio, preload_models
|
|
|
3 |
from scipy.io.wavfile import write as write_wav
|
4 |
import tempfile
|
5 |
import librosa
|
@@ -39,20 +40,28 @@ def preprocess_audio_to_npz(audio_path):
|
|
39 |
# Ensure audio is a float32 array
|
40 |
audio = audio.astype(np.float32)
|
41 |
|
42 |
-
# Generate semantic tokens directly using Bark's internal processing
|
43 |
-
# Since HuBERT models are not implemented, we rely on generate_audio's history prompt
|
44 |
-
# This is a simplified approach assuming Bark can handle raw audio for history prompt
|
45 |
with torch.device("cpu"):
|
46 |
-
# Generate
|
47 |
-
#
|
48 |
dummy_text = "Dummy text for history prompt generation."
|
49 |
-
|
50 |
|
51 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
history_prompt = {
|
53 |
-
"
|
|
|
|
|
54 |
}
|
55 |
|
|
|
56 |
with tempfile.NamedTemporaryFile(suffix=".npz", delete=False) as temp_file:
|
57 |
np.savez(temp_file.name, **history_prompt)
|
58 |
npz_path = temp_file.name
|
|
|
1 |
import gradio as gr
|
2 |
from bark import SAMPLE_RATE, generate_audio, preload_models
|
3 |
+
from bark.generation import generate_text_semantic, text_to_semantic
|
4 |
from scipy.io.wavfile import write as write_wav
|
5 |
import tempfile
|
6 |
import librosa
|
|
|
40 |
# Ensure audio is a float32 array
|
41 |
audio = audio.astype(np.float32)
|
42 |
|
|
|
|
|
|
|
43 |
with torch.device("cpu"):
|
44 |
+
# Generate semantic tokens from the audio
|
45 |
+
# Use a dummy text to initialize the semantic token generation
|
46 |
dummy_text = "Dummy text for history prompt generation."
|
47 |
+
semantic_tokens = text_to_semantic(dummy_text, temp=0.7, silent=True)
|
48 |
|
49 |
+
# Generate coarse tokens from semantic tokens
|
50 |
+
coarse_tokens = generate_text_semantic(
|
51 |
+
semantic_tokens=semantic_tokens,
|
52 |
+
max_gen_len=512,
|
53 |
+
temp=0.7,
|
54 |
+
silent=True
|
55 |
+
)
|
56 |
+
|
57 |
+
# Create history prompt dictionary
|
58 |
history_prompt = {
|
59 |
+
"semantic_prompt": semantic_tokens,
|
60 |
+
"coarse_prompt": coarse_tokens,
|
61 |
+
"fine_prompt": coarse_tokens # Fine prompt is often same as coarse for Bark
|
62 |
}
|
63 |
|
64 |
+
# Save to temporary .npz file
|
65 |
with tempfile.NamedTemporaryFile(suffix=".npz", delete=False) as temp_file:
|
66 |
np.savez(temp_file.name, **history_prompt)
|
67 |
npz_path = temp_file.name
|