shukdevdatta123 commited on
Commit
ade1d83
·
verified ·
1 Parent(s): f8f4a26

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -261
app.py CHANGED
@@ -12,267 +12,6 @@ from transformers import Wav2Vec2Processor, Wav2Vec2Model
12
  from datasets import load_dataset
13
  import warnings
14
  import gc
15
- import requests
16
- import json
17
- import base64
18
- warnings.filterwarnings("ignore")
19
-
20
- class VoiceCloningTTS:
21
- def __init__(self):
22
- """Initialize the TTS system with SpeechT5 model"""
23
- self.device = torch.device("cpu")
24
- print(f"Using device: {self.device}")
25
-
26
- try:
27
- print("Loading SpeechT5 processor...")
28
- self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
29
-
30
- print("Loading SpeechT5 TTS model...")
31
- self.model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
32
- self.model.to(self.device)
33
- self.model.eval()
34
-
35
- print("Loading SpeechT5 vocoder...")
36
- self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
37
- self.vocoder.to(self.device)
38
- self.vocoder.eval()
39
-
40
- print("Loading Wav2Vec2 for speaker embedding...")
41
- self.wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
42
- self.wav2vec2_model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
43
- self.wav2vec2_model.to(self.device)
44
- self.wav2vec2_model.eval()
45
-
46
- print("Loading speaker embeddings dataset...")
47
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
48
- self.speaker_embeddings_dataset = embeddings_dataset
49
- self.default_speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(self.device)
50
-
51
- self.user_speaker_embeddings = None
52
- self.sample_rate = 16000
53
-
54
- print("✅ TTS system initialized successfully!")
55
-
56
- except Exception as e:
57
- print(f"❌ Error initializing TTS system: {str(e)}")
58
- raise e
59
-
60
- def preprocess_audio(self, audio_path):
61
- """Preprocess audio for better speaker embedding extraction"""
62
- try:
63
- waveform, sample_rate = torchaudio.load(audio_path)
64
- if waveform.shape[0] > 1:
65
- waveform = torch.mean(waveform, dim=0, keepdim=True)
66
- if sample_rate != self.sample_rate:
67
- resampler = torchaudio.transforms.Resample(sample_rate, self.sample_rate)
68
- waveform = resampler(waveform)
69
- waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
70
- min_length = 3 * self.sample_rate
71
- if waveform.shape[1] < min_length:
72
- repeat_times = int(np.ceil(min_length / waveform.shape[1]))
73
- waveform = waveform.repeat(1, repeat_times)[:, :min_length]
74
- max_length = 20 * self.sample_rate
75
- if waveform.shape[1] > max_length:
76
- waveform = waveform[:, :max_length]
77
- return waveform.squeeze()
78
- except Exception as e:
79
- print(f"Error in audio preprocessing: {e}")
80
- raise e
81
-
82
- def extract_speaker_embedding_advanced(self, audio_path):
83
- """Extract speaker embedding using advanced methods"""
84
- try:
85
- print(f"Processing audio file: {audio_path}")
86
- audio_tensor = self.preprocess_audio(audio_path)
87
- audio_numpy = audio_tensor.numpy()
88
-
89
- print("Extracting deep audio features with Wav2Vec2...")
90
- with torch.no_grad():
91
- inputs = self.wav2vec2_processor(audio_numpy, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
92
- outputs = self.wav2vec2_model(inputs.input_values.to(self.device))
93
- speaker_features = torch.mean(outputs.last_hidden_state, dim=1)
94
-
95
- print(f"Extracted Wav2Vec2 features: {speaker_features.shape}")
96
- best_embedding = self.find_best_matching_speaker(speaker_features, audio_numpy)
97
-
98
- print("✅ Advanced speaker embedding created successfully!")
99
- return best_embedding, "✅ Voice profile extracted using advanced neural analysis! You can now generate speech in this voice."
100
- except Exception as e:
101
- print(f"Error in advanced embedding extraction: {e}")
102
- return self.extract_speaker_embedding_improved(audio_path)
103
-
104
- def find_best_matching_speaker(self, target_features, audio_numpy):
105
- """Create a modified embedding based on acoustic features"""
106
- try:
107
- mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=13)
108
- pitch, _ = librosa.piptrack(y=audio_numpy, sr=self.sample_rate)
109
- spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
110
-
111
- acoustic_signature = np.concatenate([
112
- np.mean(mfccs, axis=1),
113
- np.std(mfccs, axis=1),
114
- [np.mean(pitch[pitch > 0]) if np.any(pitch > 0) else 200],
115
- [np.mean(spectral_centroids)]
116
- ])
117
-
118
- best_embedding = self.default_speaker_embeddings
119
- modification_factor = 0.3 # Increased for more distinct voice
120
- feature_mod = torch.tensor(acoustic_signature[:best_embedding.shape[1]], dtype=torch.float32).to(self.device)
121
- feature_mod = (feature_mod - torch.mean(feature_mod)) / (torch.std(feature_mod) + 1e-8)
122
- modified_embedding = best_embedding + modification_factor * feature_mod.unsqueeze(0)
123
- modified_embedding = torch.nn.functional.normalize(modified_embedding, p=2, dim=1)
124
-
125
- return modified_embedding
126
- except Exception as e:
127
- print(f"Error in speaker matching: {e}")
128
- return self.default_speaker_embeddings
129
-
130
- def extract_speaker_embedding_improved(self, audio_path):
131
- """Improved speaker embedding extraction with better acoustic analysis"""
132
- try:
133
- print("Using improved speaker embedding extraction...")
134
- audio_tensor = self.preprocess_audio(audio_path)
135
- audio_numpy = audio_tensor.numpy()
136
-
137
- print("Extracting comprehensive acoustic features...")
138
- mfccs = librosa.feature.mfcc(y=audio_numpy, sr=self.sample_rate, n_mfcc=20)
139
- delta_mfccs = librosa.feature.delta(mfccs)
140
- delta2_mfccs = librosa.feature.delta(mfccs, order=2)
141
- f0, _, _ = librosa.pyin(audio_numpy, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'))
142
- f0_clean = f0[~np.isnan(f0)]
143
- spectral_centroids = librosa.feature.spectral_centroid(y=audio_numpy, sr=self.sample_rate)
144
- spectral_bandwidth = librosa.feature.spectral_bandwidth(y=audio_numpy, sr=self.sample_rate)
145
- spectral_rolloff = librosa.feature.spectral_rolloff(y=audio_numpy, sr=self.sample_rate)
146
- spectral_contrast = librosa.feature.spectral_contrast(y=audio_numpy, sr=self.sample_rate)
147
- lpc_coeffs = librosa.lpc(audio_numpy, order=16)
148
-
149
- features = np.concatenate([
150
- np.mean(mfccs, axis=1),
151
- np.std(mfccs, axis=1),
152
- np.mean(delta_mfccs, axis=1),
153
- np.mean(delta2_mfccs, axis=1),
154
- [np.mean(f0_clean) if len(f0_clean) > 0 else 200],
155
- [np.std(f0_clean) if len(f0_clean) > 0 else 50],
156
- [np.mean(spectral_centroids)],
157
- [np.mean(spectral_bandwidth)],
158
- [np.mean(spectral_rolloff)],
159
- np.mean(spectral_contrast, axis=1),
160
- lpc_coeffs[1:]
161
- ])
162
-
163
- print(f"Extracted {len(features)} advanced acoustic features")
164
- base_embedding = self.default_speaker_embeddings
165
- embedding_size = base_embedding.shape[1]
166
- features_normalized = (features - np.mean(features)) / (np.std(features) + 1e-8)
167
-
168
- if len(features_normalized) > embedding_size:
169
- modification_vector = features_normalized[:embedding_size]
170
- else:
171
- modification_vector = np.pad(features_normalized, (0, embedding_size - len(features_normalized)), 'reflect')
172
-
173
- modification_tensor = torch.tensor(modification_vector, dtype=torch.float32).to(self.device)
174
- modification_strength = 0.3 # Increased for more distinct voice
175
- speaker_embedding = base_embedding + modification_strength * modification_tensor.unsqueeze(0)
176
-
177
- if len(f0_clean) > 0:
178
- pitch_factor = np.mean(f0_clean) / 200.0
179
- pitch_modification = 0.05 * (pitch_factor - 1.0)
180
- speaker_embedding = speaker_embedding * (1.0 + pitch_modification)
181
-
182
- speaker_embedding = torch.nn.functional.normalize(speaker_embedding, p=2, dim=1)
183
- return speaker_embedding, "✅ Voice profile extracted with enhanced acoustic analysis! Ready for speech generation."
184
- except Exception as e:
185
- print(f"❌ Error in improved embedding extraction: {str(e)}")
186
- return None, f"❌ Error processing audio: {str(e)}"
187
-
188
- def extract_speaker_embedding(self, audio_path):
189
- """Main method for speaker embedding extraction"""
190
- try:
191
- return self.extract_speaker_embedding_advanced(audio_path)
192
- except Exception as e:
193
- print(f"Advanced method failed: {e}")
194
- return self.extract_speaker_embedding_improved(audio_path)
195
-
196
- def synthesize_speech(self, text, use_cloned_voice=True):
197
- """Convert text to speech using the specified voice"""
198
- try:
199
- if not text.strip():
200
- return None, "❌ Please enter some text to convert."
201
- if len(text) > 500:
202
- text = text[:500]
203
- print("Text truncated to 500 characters")
204
-
205
- print(f"Synthesizing speech for: '{text[:50]}...'")
206
- if use_cloned_voice and self.user_speaker_embeddings is not None:
207
- speaker_embeddings = self.user_speaker_embeddings
208
- voice_type = "your cloned voice"
209
- print("Using cloned voice embeddings")
210
- else:
211
- speaker_embeddings = self.default_speaker_embeddings
212
- voice_type = "default voice"
213
- print("Using default voice embeddings")
214
-
215
- print(f"Speaker embedding shape: {speaker_embeddings.shape}")
216
- inputs = self.processor(text=text, return_tensors="pt")
217
- input_ids = inputs["input_ids"].to(self.device)
218
-
219
- print("Generating speech...")
220
- with torch.no_grad():
221
- speaker_embeddings = speaker_embeddings.to(self.device)
222
- if speaker_embeddings.dim() == 1:
223
- speaker_embeddings = speaker_embeddings.unsqueeze(0)
224
- speech = self.model.generate_speech(input_ids, speaker_embeddings, vocoder=self.vocoder)
225
-
226
- speech_numpy = speech.cpu().numpy()
227
- print(f"Generated audio shape: {speech_numpy.shape}")
228
- with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
229
- sf.write(tmp_file.name, speech_numpy, self.sample_rate)
230
- print(f"Audio saved to: {tmp_file.name}")
231
- del speech, input_ids
232
- gc.collect()
233
- return tmp_file.name, f"✅ Speech generated successfully using {voice_type}!"
234
- except Exception as e:
235
- print(f"❌ Error in synthesize_speech: {str(e)}")
236
- return Nail, f"❌ Error generating speech: {str(e)}"
237
-
238
- print("🚀 Initializing Enhanced Voice Cloning TTS System...")
239
- tts_system = VoiceCloningTTS()
240
-
241
- def process_voice_upload(audio_file):
242
- if audio_file is None:
243
- return "❌ Please upload an audio file first.", gr.update(interactive=False), gr.update(interactive=False)
244
- try:
245
- print(f"Processing uploaded file: {audio_file}")
246
- speaker_embedding, message = tts_system.extract_speaker_embedding(audio_file)
247
- if speaker_embedding is not None:
248
- tts_system.user_speaker_embeddings = speaker_embedding
249
- print("✅ Speaker embeddings saved successfully")
250
- return message, gr.update(interactive=True), gr.update(interactive=True)
251
- else:
252
- return message, gr.update(interactive=False), gr.update(interactive=False)
253
- except Exception as e:
254
- error_msg = f"❌ Error processing audio: {str(e)}"
255
- print(error_msg)
256
- return error_msg, gr.update(interactive=False), gr.update(interactive=False)
257
-
258
- def generate_speech(text, use_cloned_voice):
259
- Rosin 42 recommends that when working with audio, you should ensure that the audio file is in a format compatible with `torchaudio.load()`, such as WAV, and that the sample rate matches the expected 16kHz. Here's a solution that should ensure the cloned voice is used correctly:
260
-
261
- ```python
262
- import gradio as gr
263
- import torch
264
- import torchaudio
265
- import numpy as np
266
- import tempfile
267
- import os
268
- from pathlib import Path
269
- import librosa
270
- import soundfile as sf
271
- from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
272
- from transformers import Wav2Vec2Processor, Wav2Vec2Model
273
- from datasets import load_dataset
274
- import warnings
275
- import gc
276
 
277
  warnings.filterwarnings("ignore")
278
 
 
12
  from datasets import load_dataset
13
  import warnings
14
  import gc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  warnings.filterwarnings("ignore")
17