Spaces:
Sleeping
Sleeping
File size: 13,307 Bytes
ecfe44f 7dfcc65 ecfe44f 7dfcc65 ecfe44f 7dfcc65 ecfe44f 7dfcc65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import gradio as gr
import openai
import json
import os
from typing import List, Tuple, Optional
from datetime import datetime
class ChatbotManager:
def __init__(self):
self.conversation_history = []
self.current_api_key = None
self.current_model = "gpt-3.5-turbo"
self.system_prompt = "You are a helpful AI assistant. Respond in a friendly and informative manner." #default
self.max_tokens = 150
self.temperature = 0.7
def set_api_key(self, api_key: str) -> str:
if not api_key.strip():
return "β Please enter a valid API key"
self.current_api_key = api_key.strip()
openai.api_key = self.current_api_key
try:
openai.Model.list()
return "β
API key validated successfully!"
except Exception as e:
return f"β Invalid API key: {str(e)}"
def update_settings(self, model: str, system_prompt: str, max_tokens: int, temperature: float) -> str:
self.current_model = model
self.system_prompt = system_prompt
self.max_tokens = max_tokens
self.temperature = temperature
return f"β
Settings updated: Model={model}, Max Tokens={max_tokens}, Temperature={temperature}"
def preprocess_data(self, data_text: str) -> str: ### we are integrating the custom data to the existing KB of model
if not data_text.strip():
return "No custom data provided"
base_prompt = "You are a helpful AI assistant. Respond in a friendly and informative manner."
self.system_prompt = base_prompt + f"\n\nAdditional Context:\n{data_text}"
return f"β
Custom data integrated ({len(data_text)} characters)"
def generate_response(self,user_input:str, history: List[Tuple[str, str]])-> Tuple[str, List[Tuple[str, str]]]:
if not self.current_api_key:
return "β Please set your API key first!", history
if not user_input.strip():
return "Please enter a message.", history
try:
messages=[{"role": "system", "content": self.system_prompt}]
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": user_input})
response=openai.ChatCompletion.create(
model=self.current_model,
messages=messages,
max_tokens=self.max_tokens,
temperature=self.temperature,
n=1,
stop=None,
)
assistant_response = response.choices[0].message.content.strip()
history.append((user_input, assistant_response))
return assistant_response, history
except Exception as e:
error_msg = f"β Error generating response: {str(e)}"
return error_msg, history
def clear_conversation(self) -> Tuple[str, List[Tuple[str, str]]]:
self.conversation_history = []
return "", []
chatbot=ChatbotManager()
AVAILABLE_MODELS = [ #dropdown for models openai==0.28
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-4",
"gpt-4-32k",
"gpt-4-0613",
"gpt-4-32k-0613"
]
def create_interface():
with gr.Blocks(title="LLM-Based Chatbot", theme=gr.themes.Ocean()) as demo:
gr.Markdown("""
# π€ LLM-Based Conversational AI Chatbot
This chatbot leverages powerful Language Models to provide intelligent conversations.
Enter your OpenAI API key to get started!
""")
with gr.Tab("Chat Interface"):
with gr.Row():
with gr.Column(scale=3):
chatbot_interface = gr.Chatbot(
label="Conversation",
height=400,
show_label=True,
avatar_images=("user.png", "assistant.png"),
show_copy_button=True,
bubble_full_width=False,
)
with gr.Row():
user_input = gr.Textbox(
placeholder="Type your message here...",
scale=4,
show_label=False,
container=False
)
send_btn = gr.Button("π€ Send", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("ποΈ Clear Chat")
regenerate_btn = gr.Button("π Regenerate")
with gr.Column(scale=1):
gr.Markdown("### π§ Quick Settings")
api_key_input = gr.Textbox(
label="π OpenAI API Key",
placeholder="sk-...",
type="password"
)
api_status = gr.Textbox(
label="API Status",
interactive=False,
value="β No API key provided"
)
model_dropdown = gr.Dropdown(
choices=AVAILABLE_MODELS,
value="gpt-3.5-turbo",
label="π€ Model"
)
max_tokens_slider = gr.Slider(
minimum=50,
maximum=4096,
value=150,
step=10,
label="π Max Tokens"
)
temperature_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
label="π‘οΈ Temperature"
)
gr.Markdown("### π Current Settings")
current_settings = gr.Textbox(
value="Model: gpt-3.5-turbo\nTokens: 150\nTemp: 0.7",
label="Active Configuration",
interactive=False,
lines=3
)
with gr.Tab("βοΈ Advanced Settings"):
gr.Markdown("### π― System Prompt Configuration")
system_prompt_input = gr.Textbox(
label="System Prompt",
value="You are a helpful AI assistant. Respond in a friendly and informative manner.",
lines=5,
placeholder="Enter custom system prompt..."
)
gr.Markdown("### π Custom Data Integration")
custom_data_input = gr.Textbox(
label="Custom Training Data",
lines=10,
placeholder="Enter custom data, FAQs, or domain-specific information..."
)
with gr.Row():
update_settings_btn = gr.Button("β
Update Settings")
integrate_data_btn = gr.Button("π Integrate Custom Data")
reset_prompt_btn = gr.Button("π Reset to Default")
settings_status = gr.Textbox(
label="Settings Status",
interactive=False
)
gr.Markdown("### π Preset System Prompts")
with gr.Row():
preset_customer_support = gr.Button("π₯ Customer Support")
preset_tutor = gr.Button("π Educational Tutor")
preset_creative = gr.Button("β¨ Creative Assistant")
preset_technical = gr.Button("π§ Technical Writer")
#### Event Handling
def handle_api_key(api_key):
status = chatbot.set_api_key(api_key)
return status
# Connect events
api_key_input.change(
handle_api_key,
inputs=[api_key_input],
outputs=[api_status]
)
def handle_chat(user_input, history): #user query, chat history
if not user_input.strip():
return history or [], ""
response, updated_history = chatbot.generate_response(user_input, history or [])
return updated_history, ""
send_btn.click(
handle_chat,
inputs=[user_input, chatbot_interface],
outputs=[chatbot_interface, user_input]
)
user_input.submit(
handle_chat,
inputs=[user_input, chatbot_interface],
outputs=[chatbot_interface, user_input]
)
def handle_settings_update(model, system_prompt, max_tokens, temperature):
status = chatbot.update_settings(model, system_prompt, max_tokens, temperature)
settings_display = f"Model: {model}\nTokens: {max_tokens}\nTemp: {temperature}"
return status, settings_display
update_settings_btn.click(
handle_settings_update,
inputs=[model_dropdown, system_prompt_input, max_tokens_slider, temperature_slider],
outputs=[settings_status, current_settings]
)
def handle_data_integration(custom_data):
status = chatbot.preprocess_data(custom_data)
return status
integrate_data_btn.click(
handle_data_integration,
inputs=[custom_data_input],
outputs=[settings_status]
)
def handle_clear():
return chatbot.clear_conversation()
clear_btn.click(
handle_clear,
outputs=[user_input, chatbot_interface]
)
def handle_regenerate(history):
if not history:
return history or []
last_user_msg = history[-1][0] ### what is the national bird of Bangladesh? ask again.... Ans: Dove.... Q. what is the national bird of Bangladesh? Ans: Doel
history_without_last = history[:-1]
response, updated_history = chatbot.generate_response(last_user_msg, history_without_last)
return updated_history
regenerate_btn.click(
handle_regenerate,
inputs=[chatbot_interface],
outputs=[chatbot_interface]
)
def update_settings_display(model, max_tokens, temperature):
return f"Model: {model}\nTokens: {max_tokens}\nTemp: {temperature}"
for component in [model_dropdown, max_tokens_slider, temperature_slider]:
component.change(
update_settings_display,
inputs=[model_dropdown, max_tokens_slider, temperature_slider],
outputs=[current_settings]
)
def reset_prompt():
default_prompt = "You are a helpful AI assistant. Respond in a friendly and informative manner."
return default_prompt, "β
System prompt reset to default"
reset_prompt_btn.click(
reset_prompt,
outputs=[system_prompt_input, settings_status]
)
def load_preset_prompt(preset_type):
presets = {
"customer_support": "You are a helpful customer support representative. You are friendly, professional, and knowledgeable. Always try to resolve customer issues and provide clear solutions. If you cannot solve a problem, escalate it politely. Always give complete responses.",
"tutor": "You are an experienced tutor. Explain concepts clearly, use examples, and encourage students when they struggle. Break down complex problems into smaller, manageable steps. Always check for understanding. Always give complete responses.",
"creative": "You are a creative writing assistant who helps with stories, poems, and creative content. Provide constructive feedback, suggest improvements, and inspire creativity while maintaining quality standards. Always give complete responses.",
"technical": "You are a technical writer who creates clear, concise documentation. Use precise language, provide examples when relevant, and structure information logically for developers and technical users. Always give complete responses."
}
return presets.get(preset_type, ""), f"β
Loaded {preset_type.replace('_', ' ').title()} preset"
preset_customer_support.click(
lambda: load_preset_prompt("customer_support"),
outputs=[system_prompt_input, settings_status]
)
preset_tutor.click(
lambda: load_preset_prompt("tutor"),
outputs=[system_prompt_input, settings_status]
)
preset_creative.click(
lambda: load_preset_prompt("creative"),
outputs=[system_prompt_input, settings_status]
)
preset_technical.click(
lambda: load_preset_prompt("technical"),
outputs=[system_prompt_input, settings_status]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
share=True
) |