File size: 13,307 Bytes
ecfe44f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dfcc65
 
 
 
ecfe44f
7dfcc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecfe44f
7dfcc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecfe44f
7dfcc65
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import gradio as gr
import openai
import json
import os
from typing import List, Tuple, Optional
from datetime import datetime

class ChatbotManager:
    def __init__(self):
        self.conversation_history = []
        self.current_api_key = None
        self.current_model = "gpt-3.5-turbo"
        self.system_prompt = "You are a helpful AI assistant. Respond in a friendly and informative manner." #default
        self.max_tokens = 150
        self.temperature = 0.7

    def set_api_key(self, api_key: str) -> str:
        if not api_key.strip():
            return "❌ Please enter a valid API key"

        self.current_api_key = api_key.strip()
        openai.api_key = self.current_api_key

        try:
            openai.Model.list()
            return "βœ… API key validated successfully!"
        except Exception as e:
            return f"❌ Invalid API key: {str(e)}"

    def update_settings(self, model: str, system_prompt: str, max_tokens: int, temperature: float) -> str:
        self.current_model = model
        self.system_prompt = system_prompt
        self.max_tokens = max_tokens
        self.temperature = temperature
        return f"βœ… Settings updated: Model={model}, Max Tokens={max_tokens}, Temperature={temperature}"

    def preprocess_data(self, data_text: str) -> str: ### we are integrating the custom data to the existing KB of model
        if not data_text.strip():
            return "No custom data provided"

        base_prompt = "You are a helpful AI assistant. Respond in a friendly and informative manner."
        self.system_prompt = base_prompt + f"\n\nAdditional Context:\n{data_text}"
        return f"βœ… Custom data integrated ({len(data_text)} characters)"

    def generate_response(self,user_input:str, history: List[Tuple[str, str]])-> Tuple[str, List[Tuple[str, str]]]:
        if not self.current_api_key:
            return "❌ Please set your API key first!", history

        if not user_input.strip():
            return "Please enter a message.", history

        try:
            messages=[{"role": "system", "content": self.system_prompt}]

            for user_msg, assistant_msg in history:
                messages.append({"role": "user", "content": user_msg})
                messages.append({"role": "assistant", "content": assistant_msg})

            messages.append({"role": "user", "content": user_input})

            response=openai.ChatCompletion.create(
                model=self.current_model,
                messages=messages,
                max_tokens=self.max_tokens,
                temperature=self.temperature,
                n=1,
                stop=None,
            )

            assistant_response = response.choices[0].message.content.strip()
            history.append((user_input, assistant_response))

            return assistant_response, history

        except Exception as e:
            error_msg = f"❌ Error generating response: {str(e)}"
            return error_msg, history

    def clear_conversation(self) -> Tuple[str, List[Tuple[str, str]]]:
        self.conversation_history = []
        return "", []

chatbot=ChatbotManager()

AVAILABLE_MODELS = [ #dropdown for models openai==0.28
    "gpt-3.5-turbo",
    "gpt-3.5-turbo-16k",
    "gpt-4",
    "gpt-4-32k",
    "gpt-4-0613",
    "gpt-4-32k-0613"
]

def create_interface():
    with gr.Blocks(title="LLM-Based Chatbot", theme=gr.themes.Ocean()) as demo:
        gr.Markdown("""
        # πŸ€– LLM-Based Conversational AI Chatbot
        This chatbot leverages powerful Language Models to provide intelligent conversations.
        Enter your OpenAI API key to get started!
        """)
        with gr.Tab("Chat Interface"):
            with gr.Row():
                with gr.Column(scale=3):
                    chatbot_interface = gr.Chatbot(
                        label="Conversation",
                        height=400,
                        show_label=True,
                        avatar_images=("user.png", "assistant.png"),
                        show_copy_button=True,
                        bubble_full_width=False,
                    )
                    with gr.Row():
                        user_input = gr.Textbox(
                            placeholder="Type your message here...",
                            scale=4,
                            show_label=False,
                            container=False
                        )
                        send_btn = gr.Button("πŸ“€ Send", variant="primary", scale=1)

                    with gr.Row():
                        clear_btn = gr.Button("πŸ—‘οΈ Clear Chat")
                        regenerate_btn = gr.Button("πŸ”„ Regenerate")

                with gr.Column(scale=1):
                    gr.Markdown("### πŸ”§ Quick Settings")
                    
                    api_key_input = gr.Textbox(
                        label="πŸ”‘ OpenAI API Key",
                        placeholder="sk-...",
                        type="password"
                    )
                    api_status = gr.Textbox(
                        label="API Status",
                        interactive=False,
                        value="❌ No API key provided"
                    )
                    
                    model_dropdown = gr.Dropdown(
                        choices=AVAILABLE_MODELS,
                        value="gpt-3.5-turbo",
                        label="πŸ€– Model"
                    )
                    
                    max_tokens_slider = gr.Slider(
                        minimum=50,
                        maximum=4096,
                        value=150,
                        step=10,
                        label="πŸ“ Max Tokens"
                    )
                    
                    temperature_slider = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.7,
                        step=0.1,
                        label="🌑️ Temperature"
                    )
                    
                    gr.Markdown("### πŸ“Š Current Settings")
                    current_settings = gr.Textbox(
                        value="Model: gpt-3.5-turbo\nTokens: 150\nTemp: 0.7",
                        label="Active Configuration",
                        interactive=False,
                        lines=3
                    )
        with gr.Tab("βš™οΈ Advanced Settings"):
            gr.Markdown("### 🎯 System Prompt Configuration")
            system_prompt_input = gr.Textbox(
                label="System Prompt",
                value="You are a helpful AI assistant. Respond in a friendly and informative manner.",
                lines=5,
                placeholder="Enter custom system prompt..."
            )
            
            gr.Markdown("### πŸ“š Custom Data Integration")
            custom_data_input = gr.Textbox(
                label="Custom Training Data",
                lines=10,
                placeholder="Enter custom data, FAQs, or domain-specific information..."
            )
            
            with gr.Row():
                update_settings_btn = gr.Button("βœ… Update Settings")
                integrate_data_btn = gr.Button("πŸ“Š Integrate Custom Data")
                reset_prompt_btn = gr.Button("πŸ”„ Reset to Default")
            
            settings_status = gr.Textbox(
                label="Settings Status",
                interactive=False
            )
            
            gr.Markdown("### 🎭 Preset System Prompts")
            with gr.Row():
                preset_customer_support = gr.Button("πŸ‘₯ Customer Support")
                preset_tutor = gr.Button("πŸŽ“ Educational Tutor")
                preset_creative = gr.Button("✨ Creative Assistant")
                preset_technical = gr.Button("πŸ”§ Technical Writer")

        #### Event Handling
        def handle_api_key(api_key):
            status = chatbot.set_api_key(api_key)
            return status

        # Connect events
        api_key_input.change(
            handle_api_key,
            inputs=[api_key_input],
            outputs=[api_status]
        )

        def handle_chat(user_input, history): #user query, chat history
            if not user_input.strip():
                return history or [], ""
            
            response, updated_history = chatbot.generate_response(user_input, history or [])
            return updated_history, ""

        send_btn.click(
            handle_chat,
            inputs=[user_input, chatbot_interface],
            outputs=[chatbot_interface, user_input]
        )

        user_input.submit(
            handle_chat,
            inputs=[user_input, chatbot_interface],
            outputs=[chatbot_interface, user_input]
        )

        def handle_settings_update(model, system_prompt, max_tokens, temperature):
            status = chatbot.update_settings(model, system_prompt, max_tokens, temperature)
            settings_display = f"Model: {model}\nTokens: {max_tokens}\nTemp: {temperature}"
            return status, settings_display

        update_settings_btn.click(
            handle_settings_update,
            inputs=[model_dropdown, system_prompt_input, max_tokens_slider, temperature_slider],
            outputs=[settings_status, current_settings]
        )

        def handle_data_integration(custom_data):
            status = chatbot.preprocess_data(custom_data)
            return status

        integrate_data_btn.click(
            handle_data_integration,
            inputs=[custom_data_input],
            outputs=[settings_status]
        )

        def handle_clear():
            return chatbot.clear_conversation()

        clear_btn.click(
            handle_clear,
            outputs=[user_input, chatbot_interface]
        )

        def handle_regenerate(history):
            if not history:
                return history or []
            
            last_user_msg = history[-1][0]   ### what is the national bird of Bangladesh? ask again.... Ans: Dove.... Q. what is the national bird of Bangladesh? Ans: Doel
            history_without_last = history[:-1]
            response, updated_history = chatbot.generate_response(last_user_msg, history_without_last)
            return updated_history

        regenerate_btn.click(
            handle_regenerate,
            inputs=[chatbot_interface],
            outputs=[chatbot_interface]
        )

        def update_settings_display(model, max_tokens, temperature):
            return f"Model: {model}\nTokens: {max_tokens}\nTemp: {temperature}"

        for component in [model_dropdown, max_tokens_slider, temperature_slider]:
            component.change(
                update_settings_display,
                inputs=[model_dropdown, max_tokens_slider, temperature_slider],
                outputs=[current_settings]
            )

        def reset_prompt():
            default_prompt = "You are a helpful AI assistant. Respond in a friendly and informative manner."
            return default_prompt, "βœ… System prompt reset to default"

        reset_prompt_btn.click(
            reset_prompt,
            outputs=[system_prompt_input, settings_status]
        )

        def load_preset_prompt(preset_type):
            presets = {
                "customer_support": "You are a helpful customer support representative. You are friendly, professional, and knowledgeable. Always try to resolve customer issues and provide clear solutions. If you cannot solve a problem, escalate it politely. Always give complete responses.",
                "tutor": "You are an experienced tutor. Explain concepts clearly, use examples, and encourage students when they struggle. Break down complex problems into smaller, manageable steps. Always check for understanding. Always give complete responses.",
                "creative": "You are a creative writing assistant who helps with stories, poems, and creative content. Provide constructive feedback, suggest improvements, and inspire creativity while maintaining quality standards. Always give complete responses.",
                "technical": "You are a technical writer who creates clear, concise documentation. Use precise language, provide examples when relevant, and structure information logically for developers and technical users. Always give complete responses."
            }
            return presets.get(preset_type, ""), f"βœ… Loaded {preset_type.replace('_', ' ').title()} preset"

        preset_customer_support.click(
            lambda: load_preset_prompt("customer_support"),
            outputs=[system_prompt_input, settings_status]
        )
        
        preset_tutor.click(
            lambda: load_preset_prompt("tutor"),
            outputs=[system_prompt_input, settings_status]
        )
        
        preset_creative.click(
            lambda: load_preset_prompt("creative"),
            outputs=[system_prompt_input, settings_status]
        )
        
        preset_technical.click(
            lambda: load_preset_prompt("technical"),
            outputs=[system_prompt_input, settings_status]
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        share=True
    )