Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,8 @@ import cv2
|
|
11 |
import numpy as np
|
12 |
from typing import List, Tuple, Optional
|
13 |
import json
|
|
|
|
|
14 |
|
15 |
class MultimodalChatbot:
|
16 |
def __init__(self, api_key: str):
|
@@ -23,15 +25,21 @@ class MultimodalChatbot:
|
|
23 |
|
24 |
def encode_image_to_base64(self, image) -> str:
|
25 |
"""Convert PIL Image to base64 string"""
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def extract_pdf_text(self, pdf_file) -> str:
|
37 |
"""Extract text from PDF file"""
|
@@ -45,30 +53,70 @@ class MultimodalChatbot:
|
|
45 |
text = ""
|
46 |
with open(pdf_path, 'rb') as file:
|
47 |
pdf_reader = PyPDF2.PdfReader(file)
|
48 |
-
for page in pdf_reader.pages:
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
except Exception as e:
|
52 |
return f"Error extracting PDF: {str(e)}"
|
53 |
|
54 |
-
def
|
55 |
-
"""
|
56 |
try:
|
57 |
-
recognizer = sr.Recognizer()
|
58 |
-
|
59 |
if hasattr(audio_file, 'name'):
|
60 |
audio_path = audio_file.name
|
61 |
else:
|
62 |
audio_path = audio_file
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
audio_data = recognizer.record(source)
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
return f"Error transcribing audio: {str(e)}"
|
70 |
|
71 |
-
def process_video(self, video_file) -> List[str]:
|
72 |
"""Extract frames from video and convert to base64"""
|
73 |
try:
|
74 |
if hasattr(video_file, 'name'):
|
@@ -77,24 +125,43 @@ class MultimodalChatbot:
|
|
77 |
video_path = video_file
|
78 |
|
79 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
80 |
frames = []
|
|
|
81 |
frame_count = 0
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
while cap.read()[0] and frame_count < 10: # Limit to 10 frames
|
85 |
ret, frame = cap.read()
|
86 |
-
if ret and frame_count %
|
87 |
# Convert BGR to RGB
|
88 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
89 |
pil_image = Image.fromarray(rgb_frame)
|
|
|
|
|
|
|
|
|
90 |
base64_frame = self.encode_image_to_base64(pil_image)
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
frame_count += 1
|
93 |
|
94 |
cap.release()
|
95 |
-
|
|
|
|
|
|
|
96 |
except Exception as e:
|
97 |
-
return [f"Error processing video: {str(e)}"
|
98 |
|
99 |
def create_multimodal_message(self,
|
100 |
text_input: str = "",
|
@@ -105,6 +172,7 @@ class MultimodalChatbot:
|
|
105 |
"""Create a multimodal message for the API"""
|
106 |
|
107 |
content_parts = []
|
|
|
108 |
|
109 |
# Add text content
|
110 |
if text_input:
|
@@ -117,6 +185,7 @@ class MultimodalChatbot:
|
|
117 |
"type": "text",
|
118 |
"text": f"PDF Content:\n{pdf_text}"
|
119 |
})
|
|
|
120 |
|
121 |
# Process Audio
|
122 |
if audio_file is not None:
|
@@ -125,30 +194,35 @@ class MultimodalChatbot:
|
|
125 |
"type": "text",
|
126 |
"text": f"Audio Transcription:\n{audio_text}"
|
127 |
})
|
|
|
128 |
|
129 |
-
# Process Image
|
130 |
if image_file is not None:
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
content_parts.append({
|
133 |
-
"type": "
|
134 |
-
"
|
135 |
-
"url": f"data:image/png;base64,{image_base64}"
|
136 |
-
}
|
137 |
})
|
|
|
138 |
|
139 |
-
|
140 |
-
if video_file is not None:
|
141 |
-
video_frames = self.process_video(video_file)
|
142 |
-
for i, frame_base64 in enumerate(video_frames):
|
143 |
-
if not frame_base64.startswith("Error"):
|
144 |
-
content_parts.append({
|
145 |
-
"type": "image_url",
|
146 |
-
"image_url": {
|
147 |
-
"url": f"data:image/png;base64,{frame_base64}"
|
148 |
-
}
|
149 |
-
})
|
150 |
-
|
151 |
-
return {"role": "user", "content": content_parts}
|
152 |
|
153 |
def chat(self,
|
154 |
text_input: str = "",
|
@@ -179,10 +253,14 @@ class MultimodalChatbot:
|
|
179 |
user_display = " | ".join(user_message_parts)
|
180 |
|
181 |
# Create multimodal message
|
182 |
-
user_message = self.create_multimodal_message(
|
183 |
text_input, pdf_file, audio_file, image_file, video_file
|
184 |
)
|
185 |
|
|
|
|
|
|
|
|
|
186 |
# Add to conversation history
|
187 |
messages = [user_message]
|
188 |
|
@@ -194,7 +272,7 @@ class MultimodalChatbot:
|
|
194 |
},
|
195 |
model=self.model,
|
196 |
messages=messages,
|
197 |
-
max_tokens=
|
198 |
temperature=0.7
|
199 |
)
|
200 |
|
@@ -213,9 +291,6 @@ class MultimodalChatbot:
|
|
213 |
def create_interface():
|
214 |
"""Create the Gradio interface"""
|
215 |
|
216 |
-
# Chatbot will be initialized when API key is provided
|
217 |
-
chatbot = None
|
218 |
-
|
219 |
with gr.Blocks(title="Multimodal Chatbot with Gemma 3n", theme=gr.themes.Soft()) as demo:
|
220 |
gr.Markdown("""
|
221 |
# π€ Multimodal Chatbot with Gemma 3n
|
@@ -223,9 +298,9 @@ def create_interface():
|
|
223 |
This chatbot can process multiple types of input:
|
224 |
- **Text**: Regular text messages
|
225 |
- **PDF**: Extract and analyze document content
|
226 |
-
- **Audio**: Transcribe speech to text
|
227 |
-
- **Images**:
|
228 |
-
- **Video**:
|
229 |
|
230 |
**Setup**: Enter your OpenRouter API key below to get started
|
231 |
""")
|
@@ -245,53 +320,175 @@ def create_interface():
|
|
245 |
interactive=False
|
246 |
)
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
)
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
# Event handlers
|
292 |
def validate_api_key(api_key):
|
293 |
if not api_key or len(api_key.strip()) == 0:
|
294 |
-
return "β API Key not provided", gr.update(interactive=False)
|
295 |
|
296 |
try:
|
297 |
# Test the API key by creating a client
|
@@ -299,60 +496,157 @@ def create_interface():
|
|
299 |
base_url="https://openrouter.ai/api/v1",
|
300 |
api_key=api_key.strip(),
|
301 |
)
|
302 |
-
return "β
API Key validated successfully", gr.update(interactive=True)
|
303 |
except Exception as e:
|
304 |
-
return f"β API Key validation failed: {str(e)}", gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
if not api_key or len(api_key.strip()) == 0:
|
308 |
if history is None:
|
309 |
history = []
|
310 |
history.append(("Error", "β Please provide a valid API key first"))
|
311 |
return history, ""
|
312 |
|
313 |
-
# Initialize chatbot with the provided API key
|
314 |
chatbot = MultimodalChatbot(api_key.strip())
|
315 |
return chatbot.chat(text, pdf, audio, image, video, history)
|
316 |
|
317 |
-
def
|
|
|
|
|
|
|
318 |
return [], "", None, None, None, None
|
319 |
|
320 |
# API Key validation
|
321 |
api_key_input.change(
|
322 |
validate_api_key,
|
323 |
inputs=[api_key_input],
|
324 |
-
outputs=[api_status,
|
|
|
325 |
)
|
326 |
|
327 |
-
#
|
328 |
-
|
329 |
-
|
330 |
-
inputs=[api_key_input, text_input,
|
331 |
-
outputs=[
|
332 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
337 |
)
|
|
|
338 |
|
339 |
-
#
|
340 |
-
|
341 |
-
|
342 |
-
inputs=[api_key_input,
|
343 |
-
outputs=[
|
344 |
)
|
|
|
345 |
|
346 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
gr.Markdown("""
|
348 |
-
### π―
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
|
357 |
### π Getting an API Key:
|
358 |
1. Go to [OpenRouter.ai](https://openrouter.ai)
|
@@ -360,6 +654,11 @@ def create_interface():
|
|
360 |
3. Navigate to the API Keys section
|
361 |
4. Create a new API key
|
362 |
5. Copy and paste it in the field above
|
|
|
|
|
|
|
|
|
|
|
363 |
""")
|
364 |
|
365 |
return demo
|
@@ -373,20 +672,21 @@ if __name__ == "__main__":
|
|
373 |
"Pillow",
|
374 |
"SpeechRecognition",
|
375 |
"opencv-python",
|
376 |
-
"numpy"
|
|
|
377 |
]
|
378 |
|
379 |
print("π Multimodal Chatbot with Gemma 3n")
|
380 |
print("=" * 50)
|
381 |
print("Required packages:", ", ".join(required_packages))
|
382 |
print("\nπ¦ To install: pip install " + " ".join(required_packages))
|
|
|
|
|
|
|
383 |
print("\nπ Get your API key from: https://openrouter.ai")
|
384 |
print("π‘ Enter your API key in the web interface when it loads")
|
385 |
|
386 |
demo = create_interface()
|
387 |
demo.launch(
|
388 |
-
share=True
|
389 |
-
server_name="0.0.0.0",
|
390 |
-
server_port=7860,
|
391 |
-
debug=True
|
392 |
)
|
|
|
11 |
import numpy as np
|
12 |
from typing import List, Tuple, Optional
|
13 |
import json
|
14 |
+
import pydub
|
15 |
+
from pydub import AudioSegment
|
16 |
|
17 |
class MultimodalChatbot:
|
18 |
def __init__(self, api_key: str):
|
|
|
25 |
|
26 |
def encode_image_to_base64(self, image) -> str:
|
27 |
"""Convert PIL Image to base64 string"""
|
28 |
+
try:
|
29 |
+
if isinstance(image, str):
|
30 |
+
# If it's a file path
|
31 |
+
with open(image, "rb") as img_file:
|
32 |
+
return base64.b64encode(img_file.read()).decode('utf-8')
|
33 |
+
else:
|
34 |
+
# If it's a PIL Image
|
35 |
+
buffered = io.BytesIO()
|
36 |
+
# Convert to RGB if it's RGBA
|
37 |
+
if image.mode == 'RGBA':
|
38 |
+
image = image.convert('RGB')
|
39 |
+
image.save(buffered, format="JPEG", quality=85)
|
40 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
41 |
+
except Exception as e:
|
42 |
+
return f"Error encoding image: {str(e)}"
|
43 |
|
44 |
def extract_pdf_text(self, pdf_file) -> str:
|
45 |
"""Extract text from PDF file"""
|
|
|
53 |
text = ""
|
54 |
with open(pdf_path, 'rb') as file:
|
55 |
pdf_reader = PyPDF2.PdfReader(file)
|
56 |
+
for page_num, page in enumerate(pdf_reader.pages):
|
57 |
+
page_text = page.extract_text()
|
58 |
+
if page_text.strip():
|
59 |
+
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
60 |
+
return text.strip() if text.strip() else "No text could be extracted from this PDF."
|
61 |
except Exception as e:
|
62 |
return f"Error extracting PDF: {str(e)}"
|
63 |
|
64 |
+
def convert_audio_to_wav(self, audio_file) -> str:
|
65 |
+
"""Convert audio file to WAV format for speech recognition"""
|
66 |
try:
|
|
|
|
|
67 |
if hasattr(audio_file, 'name'):
|
68 |
audio_path = audio_file.name
|
69 |
else:
|
70 |
audio_path = audio_file
|
71 |
+
|
72 |
+
# Get file extension
|
73 |
+
file_ext = os.path.splitext(audio_path)[1].lower()
|
74 |
+
|
75 |
+
# If already WAV, return as is
|
76 |
+
if file_ext == '.wav':
|
77 |
+
return audio_path
|
78 |
+
|
79 |
+
# Convert to WAV using pydub
|
80 |
+
audio = AudioSegment.from_file(audio_path)
|
81 |
+
# Export as WAV with proper settings for speech recognition
|
82 |
+
wav_path = tempfile.mktemp(suffix='.wav')
|
83 |
+
audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"])
|
84 |
+
return wav_path
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
raise Exception(f"Error converting audio: {str(e)}")
|
88 |
+
|
89 |
+
def transcribe_audio(self, audio_file) -> str:
|
90 |
+
"""Transcribe audio file to text"""
|
91 |
+
try:
|
92 |
+
recognizer = sr.Recognizer()
|
93 |
+
|
94 |
+
# Convert audio to WAV format
|
95 |
+
wav_path = self.convert_audio_to_wav(audio_file)
|
96 |
+
|
97 |
+
with sr.AudioFile(wav_path) as source:
|
98 |
+
# Adjust for ambient noise
|
99 |
+
recognizer.adjust_for_ambient_noise(source, duration=0.2)
|
100 |
audio_data = recognizer.record(source)
|
101 |
+
|
102 |
+
# Try Google Speech Recognition
|
103 |
+
try:
|
104 |
+
text = recognizer.recognize_google(audio_data)
|
105 |
+
return text
|
106 |
+
except sr.UnknownValueError:
|
107 |
+
return "Could not understand the audio. Please try with clearer audio."
|
108 |
+
except sr.RequestError as e:
|
109 |
+
# Fallback to offline recognition if available
|
110 |
+
try:
|
111 |
+
text = recognizer.recognize_sphinx(audio_data)
|
112 |
+
return text
|
113 |
+
except:
|
114 |
+
return f"Speech recognition service error: {str(e)}"
|
115 |
+
|
116 |
except Exception as e:
|
117 |
return f"Error transcribing audio: {str(e)}"
|
118 |
|
119 |
+
def process_video(self, video_file) -> Tuple[List[str], str]:
|
120 |
"""Extract frames from video and convert to base64"""
|
121 |
try:
|
122 |
if hasattr(video_file, 'name'):
|
|
|
125 |
video_path = video_file
|
126 |
|
127 |
cap = cv2.VideoCapture(video_path)
|
128 |
+
if not cap.isOpened():
|
129 |
+
return [], "Error: Could not open video file"
|
130 |
+
|
131 |
frames = []
|
132 |
+
frame_descriptions = []
|
133 |
frame_count = 0
|
134 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
135 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
136 |
+
|
137 |
+
# Extract frames (every 60 frames or every 2 seconds)
|
138 |
+
frame_interval = max(60, int(fps * 2)) if fps > 0 else 60
|
139 |
|
140 |
+
while cap.read()[0] and len(frames) < 5: # Limit to 5 frames
|
|
|
141 |
ret, frame = cap.read()
|
142 |
+
if ret and frame_count % frame_interval == 0:
|
143 |
# Convert BGR to RGB
|
144 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
145 |
pil_image = Image.fromarray(rgb_frame)
|
146 |
+
|
147 |
+
# Resize image to reduce size
|
148 |
+
pil_image.thumbnail((800, 600), Image.Resampling.LANCZOS)
|
149 |
+
|
150 |
base64_frame = self.encode_image_to_base64(pil_image)
|
151 |
+
if not base64_frame.startswith("Error"):
|
152 |
+
frames.append(base64_frame)
|
153 |
+
timestamp = frame_count / fps if fps > 0 else frame_count
|
154 |
+
frame_descriptions.append(f"Frame at {timestamp:.1f}s")
|
155 |
+
|
156 |
frame_count += 1
|
157 |
|
158 |
cap.release()
|
159 |
+
|
160 |
+
description = f"Video processed: {len(frames)} frames extracted from {total_frames} total frames"
|
161 |
+
return frames, description
|
162 |
+
|
163 |
except Exception as e:
|
164 |
+
return [], f"Error processing video: {str(e)}"
|
165 |
|
166 |
def create_multimodal_message(self,
|
167 |
text_input: str = "",
|
|
|
172 |
"""Create a multimodal message for the API"""
|
173 |
|
174 |
content_parts = []
|
175 |
+
processing_info = []
|
176 |
|
177 |
# Add text content
|
178 |
if text_input:
|
|
|
185 |
"type": "text",
|
186 |
"text": f"PDF Content:\n{pdf_text}"
|
187 |
})
|
188 |
+
processing_info.append("π PDF processed")
|
189 |
|
190 |
# Process Audio
|
191 |
if audio_file is not None:
|
|
|
194 |
"type": "text",
|
195 |
"text": f"Audio Transcription:\n{audio_text}"
|
196 |
})
|
197 |
+
processing_info.append("π€ Audio transcribed")
|
198 |
|
199 |
+
# Process Image - Use text-only approach since vision isn't supported
|
200 |
if image_file is not None:
|
201 |
+
# Since vision isn't supported, we'll describe what we can about the image
|
202 |
+
if hasattr(image_file, 'size'):
|
203 |
+
width, height = image_file.size
|
204 |
+
mode = image_file.mode
|
205 |
+
content_parts.append({
|
206 |
+
"type": "text",
|
207 |
+
"text": f"Image uploaded: {width}x{height} pixels, mode: {mode}. Note: Visual analysis not available with current model configuration."
|
208 |
+
})
|
209 |
+
else:
|
210 |
+
content_parts.append({
|
211 |
+
"type": "text",
|
212 |
+
"text": "Image uploaded. Note: Visual analysis not available with current model configuration."
|
213 |
+
})
|
214 |
+
processing_info.append("πΌοΈ Image received (metadata only)")
|
215 |
+
|
216 |
+
# Process Video - Use text-only approach since vision isn't supported
|
217 |
+
if video_file is not None:
|
218 |
+
frames, video_desc = self.process_video(video_file)
|
219 |
content_parts.append({
|
220 |
+
"type": "text",
|
221 |
+
"text": f"Video uploaded: {video_desc}. Note: Visual analysis not available with current model configuration."
|
|
|
|
|
222 |
})
|
223 |
+
processing_info.append("π₯ Video processed (metadata only)")
|
224 |
|
225 |
+
return {"role": "user", "content": content_parts}, processing_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
def chat(self,
|
228 |
text_input: str = "",
|
|
|
253 |
user_display = " | ".join(user_message_parts)
|
254 |
|
255 |
# Create multimodal message
|
256 |
+
user_message, processing_info = self.create_multimodal_message(
|
257 |
text_input, pdf_file, audio_file, image_file, video_file
|
258 |
)
|
259 |
|
260 |
+
# Add processing info to display
|
261 |
+
if processing_info:
|
262 |
+
user_display += f"\n{' | '.join(processing_info)}"
|
263 |
+
|
264 |
# Add to conversation history
|
265 |
messages = [user_message]
|
266 |
|
|
|
272 |
},
|
273 |
model=self.model,
|
274 |
messages=messages,
|
275 |
+
max_tokens=2048,
|
276 |
temperature=0.7
|
277 |
)
|
278 |
|
|
|
291 |
def create_interface():
|
292 |
"""Create the Gradio interface"""
|
293 |
|
|
|
|
|
|
|
294 |
with gr.Blocks(title="Multimodal Chatbot with Gemma 3n", theme=gr.themes.Soft()) as demo:
|
295 |
gr.Markdown("""
|
296 |
# π€ Multimodal Chatbot with Gemma 3n
|
|
|
298 |
This chatbot can process multiple types of input:
|
299 |
- **Text**: Regular text messages
|
300 |
- **PDF**: Extract and analyze document content
|
301 |
+
- **Audio**: Transcribe speech to text (supports WAV, MP3, M4A, FLAC)
|
302 |
+
- **Images**: Upload images (metadata analysis only due to model limitations)
|
303 |
+
- **Video**: Upload videos (metadata analysis only due to model limitations)
|
304 |
|
305 |
**Setup**: Enter your OpenRouter API key below to get started
|
306 |
""")
|
|
|
320 |
interactive=False
|
321 |
)
|
322 |
|
323 |
+
# Tabbed Interface
|
324 |
+
with gr.Tabs():
|
325 |
+
# Text Chat Tab
|
326 |
+
with gr.TabItem("π¬ Text Chat"):
|
327 |
+
with gr.Row():
|
328 |
+
with gr.Column(scale=1):
|
329 |
+
text_input = gr.Textbox(
|
330 |
+
label="π¬ Text Input",
|
331 |
+
placeholder="Type your message here...",
|
332 |
+
lines=5
|
333 |
+
)
|
334 |
+
text_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
335 |
+
text_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
336 |
+
|
337 |
+
with gr.Column(scale=2):
|
338 |
+
text_chatbot = gr.Chatbot(
|
339 |
+
label="Text Chat History",
|
340 |
+
height=600,
|
341 |
+
bubble_full_width=False,
|
342 |
+
show_copy_button=True
|
343 |
+
)
|
344 |
+
|
345 |
+
# PDF Chat Tab
|
346 |
+
with gr.TabItem("π PDF Chat"):
|
347 |
+
with gr.Row():
|
348 |
+
with gr.Column(scale=1):
|
349 |
+
pdf_input = gr.File(
|
350 |
+
label="π PDF Upload",
|
351 |
+
file_types=[".pdf"],
|
352 |
+
type="filepath"
|
353 |
+
)
|
354 |
+
pdf_text_input = gr.Textbox(
|
355 |
+
label="π¬ Question about PDF",
|
356 |
+
placeholder="Ask something about the PDF...",
|
357 |
+
lines=3
|
358 |
+
)
|
359 |
+
pdf_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
360 |
+
pdf_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
361 |
+
|
362 |
+
with gr.Column(scale=2):
|
363 |
+
pdf_chatbot = gr.Chatbot(
|
364 |
+
label="PDF Chat History",
|
365 |
+
height=600,
|
366 |
+
bubble_full_width=False,
|
367 |
+
show_copy_button=True
|
368 |
+
)
|
369 |
+
|
370 |
+
# Audio Chat Tab
|
371 |
+
with gr.TabItem("π€ Audio Chat"):
|
372 |
+
with gr.Row():
|
373 |
+
with gr.Column(scale=1):
|
374 |
+
audio_input = gr.File(
|
375 |
+
label="π€ Audio Upload",
|
376 |
+
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
|
377 |
+
type="filepath"
|
378 |
+
)
|
379 |
+
audio_text_input = gr.Textbox(
|
380 |
+
label="π¬ Question about Audio",
|
381 |
+
placeholder="Ask something about the audio...",
|
382 |
+
lines=3
|
383 |
+
)
|
384 |
+
audio_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
385 |
+
audio_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
386 |
+
|
387 |
+
with gr.Column(scale=2):
|
388 |
+
audio_chatbot = gr.Chatbot(
|
389 |
+
label="Audio Chat History",
|
390 |
+
height=600,
|
391 |
+
bubble_full_width=False,
|
392 |
+
show_copy_button=True
|
393 |
+
)
|
394 |
+
|
395 |
+
# Image Chat Tab
|
396 |
+
with gr.TabItem("πΌοΈ Image Chat"):
|
397 |
+
with gr.Row():
|
398 |
+
with gr.Column(scale=1):
|
399 |
+
image_input = gr.Image(
|
400 |
+
label="πΌοΈ Image Upload",
|
401 |
+
type="pil"
|
402 |
+
)
|
403 |
+
image_text_input = gr.Textbox(
|
404 |
+
label="π¬ Question about Image",
|
405 |
+
placeholder="Ask something about the image...",
|
406 |
+
lines=3
|
407 |
+
)
|
408 |
+
image_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
409 |
+
image_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
410 |
+
|
411 |
+
with gr.Column(scale=2):
|
412 |
+
image_chatbot = gr.Chatbot(
|
413 |
+
label="Image Chat History",
|
414 |
+
height=600,
|
415 |
+
bubble_full_width=False,
|
416 |
+
show_copy_button=True
|
417 |
+
)
|
418 |
+
|
419 |
+
# Video Chat Tab
|
420 |
+
with gr.TabItem("π₯ Video Chat"):
|
421 |
+
with gr.Row():
|
422 |
+
with gr.Column(scale=1):
|
423 |
+
video_input = gr.File(
|
424 |
+
label="π₯ Video Upload",
|
425 |
+
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
426 |
+
type="filepath"
|
427 |
+
)
|
428 |
+
video_text_input = gr.Textbox(
|
429 |
+
label="π¬ Question about Video",
|
430 |
+
placeholder="Ask something about the video...",
|
431 |
+
lines=3
|
432 |
+
)
|
433 |
+
video_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
434 |
+
video_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
435 |
+
|
436 |
+
with gr.Column(scale=2):
|
437 |
+
video_chatbot = gr.Chatbot(
|
438 |
+
label="Video Chat History",
|
439 |
+
height=600,
|
440 |
+
bubble_full_width=False,
|
441 |
+
show_copy_button=True
|
442 |
+
)
|
443 |
+
|
444 |
+
# Combined Chat Tab
|
445 |
+
with gr.TabItem("π Combined Chat"):
|
446 |
+
with gr.Row():
|
447 |
+
with gr.Column(scale=1):
|
448 |
+
combined_text_input = gr.Textbox(
|
449 |
+
label="π¬ Text Input",
|
450 |
+
placeholder="Type your message here...",
|
451 |
+
lines=3
|
452 |
+
)
|
453 |
+
|
454 |
+
combined_pdf_input = gr.File(
|
455 |
+
label="π PDF Upload",
|
456 |
+
file_types=[".pdf"],
|
457 |
+
type="filepath"
|
458 |
+
)
|
459 |
+
|
460 |
+
combined_audio_input = gr.File(
|
461 |
+
label="π€ Audio Upload",
|
462 |
+
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
|
463 |
+
type="filepath"
|
464 |
+
)
|
465 |
+
|
466 |
+
combined_image_input = gr.Image(
|
467 |
+
label="πΌοΈ Image Upload",
|
468 |
+
type="pil"
|
469 |
+
)
|
470 |
+
|
471 |
+
combined_video_input = gr.File(
|
472 |
+
label="π₯ Video Upload",
|
473 |
+
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
474 |
+
type="filepath"
|
475 |
+
)
|
476 |
+
|
477 |
+
combined_submit_btn = gr.Button("π Send All", variant="primary", size="lg", interactive=False)
|
478 |
+
combined_clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
479 |
+
|
480 |
+
with gr.Column(scale=2):
|
481 |
+
combined_chatbot = gr.Chatbot(
|
482 |
+
label="Combined Chat History",
|
483 |
+
height=600,
|
484 |
+
bubble_full_width=False,
|
485 |
+
show_copy_button=True
|
486 |
+
)
|
487 |
|
488 |
# Event handlers
|
489 |
def validate_api_key(api_key):
|
490 |
if not api_key or len(api_key.strip()) == 0:
|
491 |
+
return "β API Key not provided", *[gr.update(interactive=False) for _ in range(6)]
|
492 |
|
493 |
try:
|
494 |
# Test the API key by creating a client
|
|
|
496 |
base_url="https://openrouter.ai/api/v1",
|
497 |
api_key=api_key.strip(),
|
498 |
)
|
499 |
+
return "β
API Key validated successfully", *[gr.update(interactive=True) for _ in range(6)]
|
500 |
except Exception as e:
|
501 |
+
return f"β API Key validation failed: {str(e)}", *[gr.update(interactive=False) for _ in range(6)]
|
502 |
+
|
503 |
+
def process_text_input(api_key, text, history):
|
504 |
+
if not api_key or len(api_key.strip()) == 0:
|
505 |
+
if history is None:
|
506 |
+
history = []
|
507 |
+
history.append(("Error", "β Please provide a valid API key first"))
|
508 |
+
return history, ""
|
509 |
+
|
510 |
+
chatbot = MultimodalChatbot(api_key.strip())
|
511 |
+
return chatbot.chat(text_input=text, history=history)
|
512 |
+
|
513 |
+
def process_pdf_input(api_key, pdf, text, history):
|
514 |
+
if not api_key or len(api_key.strip()) == 0:
|
515 |
+
if history is None:
|
516 |
+
history = []
|
517 |
+
history.append(("Error", "β Please provide a valid API key first"))
|
518 |
+
return history, ""
|
519 |
+
|
520 |
+
chatbot = MultimodalChatbot(api_key.strip())
|
521 |
+
return chatbot.chat(text_input=text, pdf_file=pdf, history=history)
|
522 |
|
523 |
+
def process_audio_input(api_key, audio, text, history):
|
524 |
+
if not api_key or len(api_key.strip()) == 0:
|
525 |
+
if history is None:
|
526 |
+
history = []
|
527 |
+
history.append(("Error", "β Please provide a valid API key first"))
|
528 |
+
return history, ""
|
529 |
+
|
530 |
+
chatbot = MultimodalChatbot(api_key.strip())
|
531 |
+
return chatbot.chat(text_input=text, audio_file=audio, history=history)
|
532 |
+
|
533 |
+
def process_image_input(api_key, image, text, history):
|
534 |
+
if not api_key or len(api_key.strip()) == 0:
|
535 |
+
if history is None:
|
536 |
+
history = []
|
537 |
+
history.append(("Error", "β Please provide a valid API key first"))
|
538 |
+
return history, ""
|
539 |
+
|
540 |
+
chatbot = MultimodalChatbot(api_key.strip())
|
541 |
+
return chatbot.chat(text_input=text, image_file=image, history=history)
|
542 |
+
|
543 |
+
def process_video_input(api_key, video, text, history):
|
544 |
+
if not api_key or len(api_key.strip()) == 0:
|
545 |
+
if history is None:
|
546 |
+
history = []
|
547 |
+
history.append(("Error", "β Please provide a valid API key first"))
|
548 |
+
return history, ""
|
549 |
+
|
550 |
+
chatbot = MultimodalChatbot(api_key.strip())
|
551 |
+
return chatbot.chat(text_input=text, video_file=video, history=history)
|
552 |
+
|
553 |
+
def process_combined_input(api_key, text, pdf, audio, image, video, history):
|
554 |
if not api_key or len(api_key.strip()) == 0:
|
555 |
if history is None:
|
556 |
history = []
|
557 |
history.append(("Error", "β Please provide a valid API key first"))
|
558 |
return history, ""
|
559 |
|
|
|
560 |
chatbot = MultimodalChatbot(api_key.strip())
|
561 |
return chatbot.chat(text, pdf, audio, image, video, history)
|
562 |
|
563 |
+
def clear_chat():
|
564 |
+
return [], ""
|
565 |
+
|
566 |
+
def clear_all_inputs():
|
567 |
return [], "", None, None, None, None
|
568 |
|
569 |
# API Key validation
|
570 |
api_key_input.change(
|
571 |
validate_api_key,
|
572 |
inputs=[api_key_input],
|
573 |
+
outputs=[api_status, text_submit_btn, pdf_submit_btn, audio_submit_btn,
|
574 |
+
image_submit_btn, video_submit_btn, combined_submit_btn]
|
575 |
)
|
576 |
|
577 |
+
# Text chat events
|
578 |
+
text_submit_btn.click(
|
579 |
+
process_text_input,
|
580 |
+
inputs=[api_key_input, text_input, text_chatbot],
|
581 |
+
outputs=[text_chatbot, text_input]
|
582 |
)
|
583 |
+
text_input.submit(
|
584 |
+
process_text_input,
|
585 |
+
inputs=[api_key_input, text_input, text_chatbot],
|
586 |
+
outputs=[text_chatbot, text_input]
|
587 |
+
)
|
588 |
+
text_clear_btn.click(clear_chat, outputs=[text_chatbot, text_input])
|
589 |
|
590 |
+
# PDF chat events
|
591 |
+
pdf_submit_btn.click(
|
592 |
+
process_pdf_input,
|
593 |
+
inputs=[api_key_input, pdf_input, pdf_text_input, pdf_chatbot],
|
594 |
+
outputs=[pdf_chatbot, pdf_text_input]
|
595 |
)
|
596 |
+
pdf_clear_btn.click(lambda: ([], "", None), outputs=[pdf_chatbot, pdf_text_input, pdf_input])
|
597 |
|
598 |
+
# Audio chat events
|
599 |
+
audio_submit_btn.click(
|
600 |
+
process_audio_input,
|
601 |
+
inputs=[api_key_input, audio_input, audio_text_input, audio_chatbot],
|
602 |
+
outputs=[audio_chatbot, audio_text_input]
|
603 |
)
|
604 |
+
audio_clear_btn.click(lambda: ([], "", None), outputs=[audio_chatbot, audio_text_input, audio_input])
|
605 |
|
606 |
+
# Image chat events
|
607 |
+
image_submit_btn.click(
|
608 |
+
process_image_input,
|
609 |
+
inputs=[api_key_input, image_input, image_text_input, image_chatbot],
|
610 |
+
outputs=[image_chatbot, image_text_input]
|
611 |
+
)
|
612 |
+
image_clear_btn.click(lambda: ([], "", None), outputs=[image_chatbot, image_text_input, image_input])
|
613 |
+
|
614 |
+
# Video chat events
|
615 |
+
video_submit_btn.click(
|
616 |
+
process_video_input,
|
617 |
+
inputs=[api_key_input, video_input, video_text_input, video_chatbot],
|
618 |
+
outputs=[video_chatbot, video_text_input]
|
619 |
+
)
|
620 |
+
video_clear_btn.click(lambda: ([], "", None), outputs=[video_chatbot, video_text_input, video_input])
|
621 |
+
|
622 |
+
# Combined chat events
|
623 |
+
combined_submit_btn.click(
|
624 |
+
process_combined_input,
|
625 |
+
inputs=[api_key_input, combined_text_input, combined_pdf_input,
|
626 |
+
combined_audio_input, combined_image_input, combined_video_input, combined_chatbot],
|
627 |
+
outputs=[combined_chatbot, combined_text_input]
|
628 |
+
)
|
629 |
+
combined_clear_btn.click(clear_all_inputs,
|
630 |
+
outputs=[combined_chatbot, combined_text_input, combined_pdf_input,
|
631 |
+
combined_audio_input, combined_image_input, combined_video_input])
|
632 |
+
|
633 |
+
# Examples and Instructions
|
634 |
gr.Markdown("""
|
635 |
+
### π― How to Use Each Tab:
|
636 |
+
|
637 |
+
**π¬ Text Chat**: Simple text conversations with the AI
|
638 |
+
|
639 |
+
**π PDF Chat**: Upload a PDF and ask questions about its content
|
640 |
+
|
641 |
+
**π€ Audio Chat**: Upload audio files for transcription and analysis
|
642 |
+
- Supports: WAV, MP3, M4A, FLAC, OGG formats
|
643 |
+
- Best results with clear speech and minimal background noise
|
644 |
+
|
645 |
+
**πΌοΈ Image Chat**: Upload images (currently metadata only due to model limitations)
|
646 |
+
|
647 |
+
**π₯ Video Chat**: Upload videos (currently metadata only due to model limitations)
|
648 |
+
|
649 |
+
**π Combined Chat**: Use multiple input types together for comprehensive analysis
|
650 |
|
651 |
### π Getting an API Key:
|
652 |
1. Go to [OpenRouter.ai](https://openrouter.ai)
|
|
|
654 |
3. Navigate to the API Keys section
|
655 |
4. Create a new API key
|
656 |
5. Copy and paste it in the field above
|
657 |
+
|
658 |
+
### β οΈ Current Limitations:
|
659 |
+
- Image and video visual analysis not supported by the free Gemma 3n model
|
660 |
+
- Audio transcription requires internet connection for best results
|
661 |
+
- Large files may take longer to process
|
662 |
""")
|
663 |
|
664 |
return demo
|
|
|
672 |
"Pillow",
|
673 |
"SpeechRecognition",
|
674 |
"opencv-python",
|
675 |
+
"numpy",
|
676 |
+
"pydub"
|
677 |
]
|
678 |
|
679 |
print("π Multimodal Chatbot with Gemma 3n")
|
680 |
print("=" * 50)
|
681 |
print("Required packages:", ", ".join(required_packages))
|
682 |
print("\nπ¦ To install: pip install " + " ".join(required_packages))
|
683 |
+
print("\nπ€ For audio processing, you may also need:")
|
684 |
+
print(" - ffmpeg (for audio conversion)")
|
685 |
+
print(" - sudo apt-get install espeak espeak-data libespeak1 libespeak-dev (for offline speech recognition)")
|
686 |
print("\nπ Get your API key from: https://openrouter.ai")
|
687 |
print("π‘ Enter your API key in the web interface when it loads")
|
688 |
|
689 |
demo = create_interface()
|
690 |
demo.launch(
|
691 |
+
share=True
|
|
|
|
|
|
|
692 |
)
|