Update app.py
Browse files
app.py
CHANGED
@@ -4,17 +4,10 @@ import io
|
|
4 |
import os
|
5 |
from openai import OpenAI
|
6 |
import PyPDF2
|
7 |
-
from PIL import Image
|
8 |
import speech_recognition as sr
|
9 |
import tempfile
|
10 |
-
import cv2
|
11 |
-
import numpy as np
|
12 |
-
from typing import List, Tuple, Optional
|
13 |
-
import json
|
14 |
-
import pydub
|
15 |
from pydub import AudioSegment
|
16 |
-
from
|
17 |
-
import torch
|
18 |
|
19 |
class MultimodalChatbot:
|
20 |
def __init__(self, api_key: str):
|
@@ -22,54 +15,23 @@ class MultimodalChatbot:
|
|
22 |
base_url="https://openrouter.ai/api/v1",
|
23 |
api_key=api_key,
|
24 |
)
|
25 |
-
self.model = "google/gemma-
|
26 |
self.conversation_history = []
|
27 |
-
|
28 |
-
try:
|
29 |
-
self.pipe = pipeline(
|
30 |
-
"image-captioning",
|
31 |
-
model="Salesforce/blip-image-captioning-base",
|
32 |
-
device="cpu", # Optimized for CPU in HF Spaces
|
33 |
-
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
34 |
-
)
|
35 |
-
print("Image captioning pipeline initialized successfully")
|
36 |
-
except Exception as e:
|
37 |
-
print(f"Error initializing image captioning pipeline: {e}")
|
38 |
-
self.pipe = None
|
39 |
-
|
40 |
-
def encode_image_to_base64(self, image) -> str:
|
41 |
-
"""Convert PIL Image or file path to base64 string"""
|
42 |
-
try:
|
43 |
-
if isinstance(image, str):
|
44 |
-
with open(image, "rb") as img_file:
|
45 |
-
return base64.b64encode(img_file.read()).decode('utf-8')
|
46 |
-
elif isinstance(image, Image.Image):
|
47 |
-
buffered = io.BytesIO()
|
48 |
-
if image.mode == 'RGBA':
|
49 |
-
image = image.convert('RGB')
|
50 |
-
image.save(buffered, format="JPEG", quality=85)
|
51 |
-
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
52 |
-
else:
|
53 |
-
raise ValueError("Invalid image input")
|
54 |
-
except Exception as e:
|
55 |
-
return f"Error encoding image: {str(e)}"
|
56 |
-
|
57 |
def extract_pdf_text(self, pdf_file) -> str:
|
58 |
"""Extract text from PDF file"""
|
59 |
try:
|
60 |
-
if
|
61 |
-
pdf_path = pdf_file
|
62 |
-
elif hasattr(pdf_file, 'name'):
|
63 |
pdf_path = pdf_file.name
|
64 |
else:
|
65 |
-
|
66 |
|
67 |
text = ""
|
68 |
with open(pdf_path, 'rb') as file:
|
69 |
pdf_reader = PyPDF2.PdfReader(file)
|
70 |
for page_num, page in enumerate(pdf_reader.pages):
|
71 |
page_text = page.extract_text()
|
72 |
-
if page_text
|
73 |
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
74 |
return text.strip() if text.strip() else "No text could be extracted from this PDF."
|
75 |
except Exception as e:
|
@@ -78,12 +40,10 @@ class MultimodalChatbot:
|
|
78 |
def convert_audio_to_wav(self, audio_file) -> str:
|
79 |
"""Convert audio file to WAV format for speech recognition"""
|
80 |
try:
|
81 |
-
if
|
82 |
-
audio_path = audio_file
|
83 |
-
elif hasattr(audio_file, 'name'):
|
84 |
audio_path = audio_file.name
|
85 |
else:
|
86 |
-
|
87 |
|
88 |
file_ext = os.path.splitext(audio_path)[1].lower()
|
89 |
if file_ext == '.wav':
|
@@ -94,7 +54,7 @@ class MultimodalChatbot:
|
|
94 |
audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"])
|
95 |
return wav_path
|
96 |
except Exception as e:
|
97 |
-
|
98 |
|
99 |
def transcribe_audio(self, audio_file) -> str:
|
100 |
"""Transcribe audio file to text"""
|
@@ -105,6 +65,7 @@ class MultimodalChatbot:
|
|
105 |
with sr.AudioFile(wav_path) as source:
|
106 |
recognizer.adjust_for_ambient_noise(source, duration=0.2)
|
107 |
audio_data = recognizer.record(source)
|
|
|
108 |
try:
|
109 |
text = recognizer.recognize_google(audio_data)
|
110 |
return text
|
@@ -119,47 +80,10 @@ class MultimodalChatbot:
|
|
119 |
except Exception as e:
|
120 |
return f"Error transcribing audio: {str(e)}"
|
121 |
|
122 |
-
def extract_video_frame(self, video_file, frame_number=None):
|
123 |
-
"""Extract a frame from the video"""
|
124 |
-
try:
|
125 |
-
if isinstance(video_file, str):
|
126 |
-
video_path = video_file
|
127 |
-
elif hasattr(video_file, 'name'):
|
128 |
-
video_path = video_file.name
|
129 |
-
else:
|
130 |
-
raise ValueError("Invalid video file input")
|
131 |
-
|
132 |
-
cap = cv2.VideoCapture(video_path)
|
133 |
-
if not cap.isOpened():
|
134 |
-
return None, "Could not open video file"
|
135 |
-
|
136 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
137 |
-
if total_frames <= 0:
|
138 |
-
cap.release()
|
139 |
-
return None, "Video has no frames"
|
140 |
-
|
141 |
-
if frame_number is None:
|
142 |
-
frame_number = total_frames // 2 # Extract middle frame
|
143 |
-
if frame_number >= total_frames:
|
144 |
-
frame_number = total_frames - 1
|
145 |
-
|
146 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
147 |
-
ret, frame = cap.read()
|
148 |
-
cap.release()
|
149 |
-
if ret:
|
150 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
151 |
-
return Image.fromarray(frame), f"Extracted frame {frame_number} of {total_frames}"
|
152 |
-
else:
|
153 |
-
return None, "Failed to extract frame"
|
154 |
-
except Exception as e:
|
155 |
-
return None, f"Error extracting video frame: {str(e)}"
|
156 |
-
|
157 |
def create_multimodal_message(self,
|
158 |
text_input: str = "",
|
159 |
pdf_file=None,
|
160 |
-
audio_file=None
|
161 |
-
image_file=None,
|
162 |
-
video_file=None) -> dict:
|
163 |
"""Create a multimodal message for the API"""
|
164 |
content_parts = []
|
165 |
processing_info = []
|
@@ -169,64 +93,26 @@ class MultimodalChatbot:
|
|
169 |
|
170 |
if pdf_file is not None:
|
171 |
pdf_text = self.extract_pdf_text(pdf_file)
|
172 |
-
content_parts.append({
|
|
|
|
|
|
|
173 |
processing_info.append("π PDF processed")
|
174 |
|
175 |
if audio_file is not None:
|
176 |
audio_text = self.transcribe_audio(audio_file)
|
177 |
-
content_parts.append({
|
|
|
|
|
|
|
178 |
processing_info.append("π€ Audio transcribed")
|
179 |
|
180 |
-
if image_file is not None and self.pipe is not None:
|
181 |
-
try:
|
182 |
-
if isinstance(image_file, str):
|
183 |
-
image = Image.open(image_file)
|
184 |
-
else:
|
185 |
-
image = image_file
|
186 |
-
# Use BLIP model for image captioning
|
187 |
-
output = self.pipe(image)
|
188 |
-
description = output[0]['generated_caption']
|
189 |
-
if text_input:
|
190 |
-
content_parts.append({"type": "text", "text": f"Image analysis (based on '{text_input}'): {description}"})
|
191 |
-
else:
|
192 |
-
content_parts.append({"type": "text", "text": f"Image analysis: {description}"})
|
193 |
-
processing_info.append("πΌοΈ Image analyzed")
|
194 |
-
except Exception as e:
|
195 |
-
content_parts.append({"type": "text", "text": f"Error analyzing image: {str(e)}"})
|
196 |
-
processing_info.append("πΌοΈ Image analysis failed")
|
197 |
-
elif image_file is not None:
|
198 |
-
content_parts.append({"type": "text", "text": "Image uploaded. Analysis failed due to model initialization error."})
|
199 |
-
processing_info.append("πΌοΈ Image received (analysis failed)")
|
200 |
-
|
201 |
-
if video_file is not None and self.pipe is not None:
|
202 |
-
frame, frame_info = self.extract_video_frame(video_file)
|
203 |
-
if frame:
|
204 |
-
try:
|
205 |
-
output = self.pipe(frame)
|
206 |
-
description = output[0]['generated_caption']
|
207 |
-
if text_input:
|
208 |
-
content_parts.append({"type": "text", "text": f"Video frame analysis (based on '{text_input}'): {description}. Frame info: {frame_info}. Please describe the video for further assistance."})
|
209 |
-
else:
|
210 |
-
content_parts.append({"type": "text", "text": f"Video frame analysis: {description}. Frame info: {frame_info}. Please describe the video for further assistance."})
|
211 |
-
processing_info.append("π₯ Video frame analyzed")
|
212 |
-
except Exception as e:
|
213 |
-
content_parts.append({"type": "text", "text": f"Error analyzing video frame: {str(e)}. Frame info: {frame_info}"})
|
214 |
-
processing_info.append("π₯ Video frame analysis failed")
|
215 |
-
else:
|
216 |
-
content_parts.append({"type": "text", "text": f"Could not extract frame from video: {frame_info}. Please describe the video."})
|
217 |
-
processing_info.append("π₯ Video processing failed")
|
218 |
-
elif video_file is not None:
|
219 |
-
content_parts.append({"type": "text", "text": "Video uploaded. Analysis failed due to model initialization error."})
|
220 |
-
processing_info.append("π₯ Video received (analysis failed)")
|
221 |
-
|
222 |
return {"role": "user", "content": content_parts}, processing_info
|
223 |
|
224 |
def chat(self,
|
225 |
text_input: str = "",
|
226 |
pdf_file=None,
|
227 |
audio_file=None,
|
228 |
-
image_file=None,
|
229 |
-
video_file=None,
|
230 |
history: List[Tuple[str, str]] = None) -> Tuple[List[Tuple[str, str]], str]:
|
231 |
"""Main chat function"""
|
232 |
if history is None:
|
@@ -240,20 +126,18 @@ class MultimodalChatbot:
|
|
240 |
user_message_parts.append("π PDF uploaded")
|
241 |
if audio_file:
|
242 |
user_message_parts.append("π€ Audio uploaded")
|
243 |
-
if image_file:
|
244 |
-
user_message_parts.append("πΌοΈ Image uploaded")
|
245 |
-
if video_file:
|
246 |
-
user_message_parts.append("π₯ Video uploaded")
|
247 |
|
248 |
user_display = " | ".join(user_message_parts)
|
|
|
249 |
user_message, processing_info = self.create_multimodal_message(
|
250 |
-
text_input, pdf_file, audio_file
|
251 |
)
|
252 |
|
253 |
if processing_info:
|
254 |
user_display += f"\n{' | '.join(processing_info)}"
|
255 |
|
256 |
messages = [user_message]
|
|
|
257 |
completion = self.client.chat.completions.create(
|
258 |
extra_headers={
|
259 |
"HTTP-Referer": "https://multimodal-chatbot.local",
|
@@ -267,7 +151,9 @@ class MultimodalChatbot:
|
|
267 |
|
268 |
bot_response = completion.choices[0].message.content
|
269 |
history.append((user_display, bot_response))
|
|
|
270 |
return history, ""
|
|
|
271 |
except Exception as e:
|
272 |
error_msg = f"Error: {str(e)}"
|
273 |
history.append((user_display if 'user_display' in locals() else "Error in input", error_msg))
|
@@ -275,16 +161,14 @@ class MultimodalChatbot:
|
|
275 |
|
276 |
def create_interface():
|
277 |
"""Create the Gradio interface"""
|
278 |
-
with gr.Blocks(title="Multimodal Chatbot with
|
279 |
gr.Markdown("""
|
280 |
-
# π€ Multimodal Chatbot with
|
281 |
|
282 |
This chatbot can process multiple types of input:
|
283 |
-
- **Text**: Regular text messages
|
284 |
- **PDF**: Extract and analyze document content
|
285 |
- **Audio**: Transcribe speech to text (supports WAV, MP3, M4A, FLAC)
|
286 |
-
- **Images**: Upload images for analysis using BLIP
|
287 |
-
- **Video**: Upload videos for basic frame analysis using BLIP
|
288 |
|
289 |
**Setup**: Enter your OpenRouter API key below to get started
|
290 |
""")
|
@@ -314,6 +198,7 @@ def create_interface():
|
|
314 |
)
|
315 |
text_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
316 |
text_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
|
|
317 |
with gr.Column(scale=2):
|
318 |
text_chatbot = gr.Chatbot(
|
319 |
label="Text Chat History",
|
@@ -337,6 +222,7 @@ def create_interface():
|
|
337 |
)
|
338 |
pdf_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
339 |
pdf_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
|
|
340 |
with gr.Column(scale=2):
|
341 |
pdf_chatbot = gr.Chatbot(
|
342 |
label="PDF Chat History",
|
@@ -360,6 +246,7 @@ def create_interface():
|
|
360 |
)
|
361 |
audio_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
362 |
audio_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
|
|
363 |
with gr.Column(scale=2):
|
364 |
audio_chatbot = gr.Chatbot(
|
365 |
label="Audio Chat History",
|
@@ -368,51 +255,6 @@ def create_interface():
|
|
368 |
show_copy_button=True
|
369 |
)
|
370 |
|
371 |
-
with gr.TabItem("πΌοΈ Image Chat"):
|
372 |
-
with gr.Row():
|
373 |
-
with gr.Column(scale=1):
|
374 |
-
image_input = gr.Image(
|
375 |
-
label="πΌοΈ Image Upload",
|
376 |
-
type="pil"
|
377 |
-
)
|
378 |
-
image_text_input = gr.Textbox(
|
379 |
-
label="π¬ Question about Image",
|
380 |
-
placeholder="Ask something about the image...",
|
381 |
-
lines=3
|
382 |
-
)
|
383 |
-
image_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
384 |
-
image_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
385 |
-
with gr.Column(scale=2):
|
386 |
-
image_chatbot = gr.Chatbot(
|
387 |
-
label="Image Chat History",
|
388 |
-
height=600,
|
389 |
-
bubble_full_width=False,
|
390 |
-
show_copy_button=True
|
391 |
-
)
|
392 |
-
|
393 |
-
with gr.TabItem("π₯ Video Chat"):
|
394 |
-
with gr.Row():
|
395 |
-
with gr.Column(scale=1):
|
396 |
-
video_input = gr.File(
|
397 |
-
label="π₯ Video Upload",
|
398 |
-
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
399 |
-
type="filepath"
|
400 |
-
)
|
401 |
-
video_text_input = gr.Textbox(
|
402 |
-
label="π¬ Question about Video",
|
403 |
-
placeholder="Ask something about the video...",
|
404 |
-
lines=3
|
405 |
-
)
|
406 |
-
video_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
407 |
-
video_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
408 |
-
with gr.Column(scale=2):
|
409 |
-
video_chatbot = gr.Chatbot(
|
410 |
-
label="Video Chat History",
|
411 |
-
height=600,
|
412 |
-
bubble_full_width=False,
|
413 |
-
show_copy_button=True
|
414 |
-
)
|
415 |
-
|
416 |
with gr.TabItem("π Combined Chat"):
|
417 |
with gr.Row():
|
418 |
with gr.Column(scale=1):
|
@@ -431,17 +273,9 @@ def create_interface():
|
|
431 |
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
|
432 |
type="filepath"
|
433 |
)
|
434 |
-
combined_image_input = gr.Image(
|
435 |
-
label="πΌοΈ Image Upload",
|
436 |
-
type="pil"
|
437 |
-
)
|
438 |
-
combined_video_input = gr.File(
|
439 |
-
label="π₯ Video Upload",
|
440 |
-
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
|
441 |
-
type="filepath"
|
442 |
-
)
|
443 |
combined_submit_btn = gr.Button("π Send All", variant="primary", size="lg", interactive=False)
|
444 |
combined_clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
|
|
445 |
with gr.Column(scale=2):
|
446 |
combined_chatbot = gr.Chatbot(
|
447 |
label="Combined Chat History",
|
@@ -452,15 +286,16 @@ def create_interface():
|
|
452 |
|
453 |
def validate_api_key(api_key):
|
454 |
if not api_key or len(api_key.strip()) == 0:
|
455 |
-
return "β API Key not provided", *[gr.update(interactive=False) for _ in range(
|
|
|
456 |
try:
|
457 |
test_client = OpenAI(
|
458 |
base_url="https://openrouter.ai/api/v1",
|
459 |
api_key=api_key.strip(),
|
460 |
)
|
461 |
-
return "β
API Key validated successfully", *[gr.update(interactive=True) for _ in range(
|
462 |
except Exception as e:
|
463 |
-
return f"β API Key validation failed: {str(e)}", *[gr.update(interactive=False) for _ in range(
|
464 |
|
465 |
def process_text_input(api_key, text, history):
|
466 |
if not api_key or len(api_key.strip()) == 0:
|
@@ -468,6 +303,7 @@ def create_interface():
|
|
468 |
history = []
|
469 |
history.append(("Error", "β Please provide a valid API key first"))
|
470 |
return history, ""
|
|
|
471 |
chatbot = MultimodalChatbot(api_key.strip())
|
472 |
return chatbot.chat(text_input=text, history=history)
|
473 |
|
@@ -477,6 +313,7 @@ def create_interface():
|
|
477 |
history = []
|
478 |
history.append(("Error", "β Please provide a valid API key first"))
|
479 |
return history, ""
|
|
|
480 |
chatbot = MultimodalChatbot(api_key.strip())
|
481 |
return chatbot.chat(text_input=text, pdf_file=pdf, history=history)
|
482 |
|
@@ -486,47 +323,30 @@ def create_interface():
|
|
486 |
history = []
|
487 |
history.append(("Error", "β Please provide a valid API key first"))
|
488 |
return history, ""
|
|
|
489 |
chatbot = MultimodalChatbot(api_key.strip())
|
490 |
return chatbot.chat(text_input=text, audio_file=audio, history=history)
|
491 |
|
492 |
-
def
|
493 |
-
if not api_key or len(api_key.strip()) == 0:
|
494 |
-
if history is None:
|
495 |
-
history = []
|
496 |
-
history.append(("Error", "β Please provide a valid API key first"))
|
497 |
-
return history, ""
|
498 |
-
chatbot = MultimodalChatbot(api_key.strip())
|
499 |
-
return chatbot.chat(text_input=text, image_file=image, history=history)
|
500 |
-
|
501 |
-
def process_video_input(api_key, video, text, history):
|
502 |
-
if not api_key or len(api_key.strip()) == 0:
|
503 |
-
if history is None:
|
504 |
-
history = []
|
505 |
-
history.append(("Error", "β Please provide a valid API key first"))
|
506 |
-
return history, ""
|
507 |
-
chatbot = MultimodalChatbot(api_key.strip())
|
508 |
-
return chatbot.chat(text_input=text, video_file=video, history=history)
|
509 |
-
|
510 |
-
def process_combined_input(api_key, text, pdf, audio, image, video, history):
|
511 |
if not api_key or len(api_key.strip()) == 0:
|
512 |
if history is None:
|
513 |
history = []
|
514 |
history.append(("Error", "β Please provide a valid API key first"))
|
515 |
return history, ""
|
|
|
516 |
chatbot = MultimodalChatbot(api_key.strip())
|
517 |
-
return chatbot.chat(
|
518 |
|
519 |
def clear_chat():
|
520 |
return [], ""
|
521 |
|
522 |
def clear_all_inputs():
|
523 |
-
return [], "", None, None
|
524 |
|
525 |
api_key_input.change(
|
526 |
validate_api_key,
|
527 |
inputs=[api_key_input],
|
528 |
-
outputs=[api_status, text_submit_btn, pdf_submit_btn, audio_submit_btn,
|
529 |
-
image_submit_btn, video_submit_btn, combined_submit_btn]
|
530 |
)
|
531 |
|
532 |
text_submit_btn.click(
|
@@ -555,34 +375,20 @@ def create_interface():
|
|
555 |
)
|
556 |
audio_clear_btn.click(lambda: ([], "", None), outputs=[audio_chatbot, audio_text_input, audio_input])
|
557 |
|
558 |
-
image_submit_btn.click(
|
559 |
-
process_image_input,
|
560 |
-
inputs=[api_key_input, image_input, image_text_input, image_chatbot],
|
561 |
-
outputs=[image_chatbot, image_text_input]
|
562 |
-
)
|
563 |
-
image_clear_btn.click(lambda: ([], "", None), outputs=[image_chatbot, image_text_input, image_input])
|
564 |
-
|
565 |
-
video_submit_btn.click(
|
566 |
-
process_video_input,
|
567 |
-
inputs=[api_key_input, video_input, video_text_input, video_chatbot],
|
568 |
-
outputs=[video_chatbot, video_text_input]
|
569 |
-
)
|
570 |
-
video_clear_btn.click(lambda: ([], "", None), outputs=[video_chatbot, video_text_input, video_input])
|
571 |
-
|
572 |
combined_submit_btn.click(
|
573 |
process_combined_input,
|
574 |
inputs=[api_key_input, combined_text_input, combined_pdf_input,
|
575 |
-
combined_audio_input,
|
576 |
outputs=[combined_chatbot, combined_text_input]
|
577 |
)
|
578 |
combined_clear_btn.click(clear_all_inputs,
|
579 |
-
outputs=[combined_chatbot, combined_text_input,
|
580 |
-
|
581 |
|
582 |
gr.Markdown("""
|
583 |
### π― How to Use Each Tab:
|
584 |
|
585 |
-
**π¬ Text Chat**: Simple text conversations with the AI
|
586 |
|
587 |
**π PDF Chat**: Upload a PDF and ask questions about its content
|
588 |
|
@@ -590,12 +396,6 @@ def create_interface():
|
|
590 |
- Supports: WAV, MP3, M4A, FLAC, OGG formats
|
591 |
- Best results with clear speech and minimal background noise
|
592 |
|
593 |
-
**πΌοΈ Image Chat**: Upload images for analysis using BLIP
|
594 |
-
- Provide a text prompt to guide the analysis (e.g., "What is in this image?")
|
595 |
-
|
596 |
-
**π₯ Video Chat**: Upload videos for basic frame analysis using BLIP
|
597 |
-
- Analysis is based on a single frame; provide a text description for full video context
|
598 |
-
|
599 |
**π Combined Chat**: Use multiple input types together for comprehensive analysis
|
600 |
|
601 |
### π Getting an API Key:
|
@@ -606,10 +406,8 @@ def create_interface():
|
|
606 |
5. Copy and paste it in the field above
|
607 |
|
608 |
### β οΈ Current Limitations:
|
609 |
-
-
|
610 |
-
- Video analysis is limited to a single frame due to CPU constraints
|
611 |
- Large files may take longer to process
|
612 |
-
- BLIP model may provide basic captions; detailed video descriptions require additional user input
|
613 |
""")
|
614 |
|
615 |
return demo
|
@@ -619,16 +417,11 @@ if __name__ == "__main__":
|
|
619 |
"gradio",
|
620 |
"openai",
|
621 |
"PyPDF2",
|
622 |
-
"Pillow",
|
623 |
"SpeechRecognition",
|
624 |
-
"
|
625 |
-
"numpy",
|
626 |
-
"pydub",
|
627 |
-
"transformers",
|
628 |
-
"torch"
|
629 |
]
|
630 |
|
631 |
-
print("π Multimodal Chatbot with
|
632 |
print("=" * 50)
|
633 |
print("Required packages:", ", ".join(required_packages))
|
634 |
print("\nπ¦ To install: pip install " + " ".join(required_packages))
|
@@ -639,4 +432,6 @@ if __name__ == "__main__":
|
|
639 |
print("π‘ Enter your API key in the web interface when it loads")
|
640 |
|
641 |
demo = create_interface()
|
642 |
-
demo.launch(
|
|
|
|
|
|
4 |
import os
|
5 |
from openai import OpenAI
|
6 |
import PyPDF2
|
|
|
7 |
import speech_recognition as sr
|
8 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
9 |
from pydub import AudioSegment
|
10 |
+
from typing import List, Tuple, Optional
|
|
|
11 |
|
12 |
class MultimodalChatbot:
|
13 |
def __init__(self, api_key: str):
|
|
|
15 |
base_url="https://openrouter.ai/api/v1",
|
16 |
api_key=api_key,
|
17 |
)
|
18 |
+
self.model = "google/gemma-3n-e2b-it:free"
|
19 |
self.conversation_history = []
|
20 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def extract_pdf_text(self, pdf_file) -> str:
|
22 |
"""Extract text from PDF file"""
|
23 |
try:
|
24 |
+
if hasattr(pdf_file, 'name'):
|
|
|
|
|
25 |
pdf_path = pdf_file.name
|
26 |
else:
|
27 |
+
pdf_path = pdf_file
|
28 |
|
29 |
text = ""
|
30 |
with open(pdf_path, 'rb') as file:
|
31 |
pdf_reader = PyPDF2.PdfReader(file)
|
32 |
for page_num, page in enumerate(pdf_reader.pages):
|
33 |
page_text = page.extract_text()
|
34 |
+
if page_text.strip():
|
35 |
text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
36 |
return text.strip() if text.strip() else "No text could be extracted from this PDF."
|
37 |
except Exception as e:
|
|
|
40 |
def convert_audio_to_wav(self, audio_file) -> str:
|
41 |
"""Convert audio file to WAV format for speech recognition"""
|
42 |
try:
|
43 |
+
if hasattr(audio_file, 'name'):
|
|
|
|
|
44 |
audio_path = audio_file.name
|
45 |
else:
|
46 |
+
audio_path = audio_file
|
47 |
|
48 |
file_ext = os.path.splitext(audio_path)[1].lower()
|
49 |
if file_ext == '.wav':
|
|
|
54 |
audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"])
|
55 |
return wav_path
|
56 |
except Exception as e:
|
57 |
+
raise Exception(f"Error converting audio: {str(e)}")
|
58 |
|
59 |
def transcribe_audio(self, audio_file) -> str:
|
60 |
"""Transcribe audio file to text"""
|
|
|
65 |
with sr.AudioFile(wav_path) as source:
|
66 |
recognizer.adjust_for_ambient_noise(source, duration=0.2)
|
67 |
audio_data = recognizer.record(source)
|
68 |
+
|
69 |
try:
|
70 |
text = recognizer.recognize_google(audio_data)
|
71 |
return text
|
|
|
80 |
except Exception as e:
|
81 |
return f"Error transcribing audio: {str(e)}"
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def create_multimodal_message(self,
|
84 |
text_input: str = "",
|
85 |
pdf_file=None,
|
86 |
+
audio_file=None) -> dict:
|
|
|
|
|
87 |
"""Create a multimodal message for the API"""
|
88 |
content_parts = []
|
89 |
processing_info = []
|
|
|
93 |
|
94 |
if pdf_file is not None:
|
95 |
pdf_text = self.extract_pdf_text(pdf_file)
|
96 |
+
content_parts.append({
|
97 |
+
"type": "text",
|
98 |
+
"text": f"PDF Content:\n{pdf_text}"
|
99 |
+
})
|
100 |
processing_info.append("π PDF processed")
|
101 |
|
102 |
if audio_file is not None:
|
103 |
audio_text = self.transcribe_audio(audio_file)
|
104 |
+
content_parts.append({
|
105 |
+
"type": "text",
|
106 |
+
"text": f"Audio Transcription:\n{audio_text}"
|
107 |
+
})
|
108 |
processing_info.append("π€ Audio transcribed")
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
return {"role": "user", "content": content_parts}, processing_info
|
111 |
|
112 |
def chat(self,
|
113 |
text_input: str = "",
|
114 |
pdf_file=None,
|
115 |
audio_file=None,
|
|
|
|
|
116 |
history: List[Tuple[str, str]] = None) -> Tuple[List[Tuple[str, str]], str]:
|
117 |
"""Main chat function"""
|
118 |
if history is None:
|
|
|
126 |
user_message_parts.append("π PDF uploaded")
|
127 |
if audio_file:
|
128 |
user_message_parts.append("π€ Audio uploaded")
|
|
|
|
|
|
|
|
|
129 |
|
130 |
user_display = " | ".join(user_message_parts)
|
131 |
+
|
132 |
user_message, processing_info = self.create_multimodal_message(
|
133 |
+
text_input, pdf_file, audio_file
|
134 |
)
|
135 |
|
136 |
if processing_info:
|
137 |
user_display += f"\n{' | '.join(processing_info)}"
|
138 |
|
139 |
messages = [user_message]
|
140 |
+
|
141 |
completion = self.client.chat.completions.create(
|
142 |
extra_headers={
|
143 |
"HTTP-Referer": "https://multimodal-chatbot.local",
|
|
|
151 |
|
152 |
bot_response = completion.choices[0].message.content
|
153 |
history.append((user_display, bot_response))
|
154 |
+
|
155 |
return history, ""
|
156 |
+
|
157 |
except Exception as e:
|
158 |
error_msg = f"Error: {str(e)}"
|
159 |
history.append((user_display if 'user_display' in locals() else "Error in input", error_msg))
|
|
|
161 |
|
162 |
def create_interface():
|
163 |
"""Create the Gradio interface"""
|
164 |
+
with gr.Blocks(title="Multimodal Chatbot with Gemma 3n", theme=gr.themes.Soft()) as demo:
|
165 |
gr.Markdown("""
|
166 |
+
# π€ Multimodal Chatbot with Gemma 3n
|
167 |
|
168 |
This chatbot can process multiple types of input:
|
169 |
+
- **Text**: Regular text messages
|
170 |
- **PDF**: Extract and analyze document content
|
171 |
- **Audio**: Transcribe speech to text (supports WAV, MP3, M4A, FLAC)
|
|
|
|
|
172 |
|
173 |
**Setup**: Enter your OpenRouter API key below to get started
|
174 |
""")
|
|
|
198 |
)
|
199 |
text_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
200 |
text_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
201 |
+
|
202 |
with gr.Column(scale=2):
|
203 |
text_chatbot = gr.Chatbot(
|
204 |
label="Text Chat History",
|
|
|
222 |
)
|
223 |
pdf_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
224 |
pdf_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
225 |
+
|
226 |
with gr.Column(scale=2):
|
227 |
pdf_chatbot = gr.Chatbot(
|
228 |
label="PDF Chat History",
|
|
|
246 |
)
|
247 |
audio_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False)
|
248 |
audio_clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
249 |
+
|
250 |
with gr.Column(scale=2):
|
251 |
audio_chatbot = gr.Chatbot(
|
252 |
label="Audio Chat History",
|
|
|
255 |
show_copy_button=True
|
256 |
)
|
257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
with gr.TabItem("π Combined Chat"):
|
259 |
with gr.Row():
|
260 |
with gr.Column(scale=1):
|
|
|
273 |
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
|
274 |
type="filepath"
|
275 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
combined_submit_btn = gr.Button("π Send All", variant="primary", size="lg", interactive=False)
|
277 |
combined_clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
|
278 |
+
|
279 |
with gr.Column(scale=2):
|
280 |
combined_chatbot = gr.Chatbot(
|
281 |
label="Combined Chat History",
|
|
|
286 |
|
287 |
def validate_api_key(api_key):
|
288 |
if not api_key or len(api_key.strip()) == 0:
|
289 |
+
return "β API Key not provided", *[gr.update(interactive=False) for _ in range(4)]
|
290 |
+
|
291 |
try:
|
292 |
test_client = OpenAI(
|
293 |
base_url="https://openrouter.ai/api/v1",
|
294 |
api_key=api_key.strip(),
|
295 |
)
|
296 |
+
return "β
API Key validated successfully", *[gr.update(interactive=True) for _ in range(4)]
|
297 |
except Exception as e:
|
298 |
+
return f"β API Key validation failed: {str(e)}", *[gr.update(interactive=False) for _ in range(4)]
|
299 |
|
300 |
def process_text_input(api_key, text, history):
|
301 |
if not api_key or len(api_key.strip()) == 0:
|
|
|
303 |
history = []
|
304 |
history.append(("Error", "β Please provide a valid API key first"))
|
305 |
return history, ""
|
306 |
+
|
307 |
chatbot = MultimodalChatbot(api_key.strip())
|
308 |
return chatbot.chat(text_input=text, history=history)
|
309 |
|
|
|
313 |
history = []
|
314 |
history.append(("Error", "β Please provide a valid API key first"))
|
315 |
return history, ""
|
316 |
+
|
317 |
chatbot = MultimodalChatbot(api_key.strip())
|
318 |
return chatbot.chat(text_input=text, pdf_file=pdf, history=history)
|
319 |
|
|
|
323 |
history = []
|
324 |
history.append(("Error", "β Please provide a valid API key first"))
|
325 |
return history, ""
|
326 |
+
|
327 |
chatbot = MultimodalChatbot(api_key.strip())
|
328 |
return chatbot.chat(text_input=text, audio_file=audio, history=history)
|
329 |
|
330 |
+
def process_combined_input(api_key, text, pdf, audio, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
if not api_key or len(api_key.strip()) == 0:
|
332 |
if history is None:
|
333 |
history = []
|
334 |
history.append(("Error", "β Please provide a valid API key first"))
|
335 |
return history, ""
|
336 |
+
|
337 |
chatbot = MultimodalChatbot(api_key.strip())
|
338 |
+
return chatbot.chat(text, pdf, audio, history)
|
339 |
|
340 |
def clear_chat():
|
341 |
return [], ""
|
342 |
|
343 |
def clear_all_inputs():
|
344 |
+
return [], "", None, None
|
345 |
|
346 |
api_key_input.change(
|
347 |
validate_api_key,
|
348 |
inputs=[api_key_input],
|
349 |
+
outputs=[api_status, text_submit_btn, pdf_submit_btn, audio_submit_btn, combined_submit_btn]
|
|
|
350 |
)
|
351 |
|
352 |
text_submit_btn.click(
|
|
|
375 |
)
|
376 |
audio_clear_btn.click(lambda: ([], "", None), outputs=[audio_chatbot, audio_text_input, audio_input])
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
combined_submit_btn.click(
|
379 |
process_combined_input,
|
380 |
inputs=[api_key_input, combined_text_input, combined_pdf_input,
|
381 |
+
combined_audio_input, combined_chatbot],
|
382 |
outputs=[combined_chatbot, combined_text_input]
|
383 |
)
|
384 |
combined_clear_btn.click(clear_all_inputs,
|
385 |
+
outputs=[combined_chatbot, combined_text_input,
|
386 |
+
combined_pdf_input, combined_audio_input])
|
387 |
|
388 |
gr.Markdown("""
|
389 |
### π― How to Use Each Tab:
|
390 |
|
391 |
+
**π¬ Text Chat**: Simple text conversations with the AI
|
392 |
|
393 |
**π PDF Chat**: Upload a PDF and ask questions about its content
|
394 |
|
|
|
396 |
- Supports: WAV, MP3, M4A, FLAC, OGG formats
|
397 |
- Best results with clear speech and minimal background noise
|
398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
**π Combined Chat**: Use multiple input types together for comprehensive analysis
|
400 |
|
401 |
### π Getting an API Key:
|
|
|
406 |
5. Copy and paste it in the field above
|
407 |
|
408 |
### β οΈ Current Limitations:
|
409 |
+
- Audio transcription requires internet connection for best results
|
|
|
410 |
- Large files may take longer to process
|
|
|
411 |
""")
|
412 |
|
413 |
return demo
|
|
|
417 |
"gradio",
|
418 |
"openai",
|
419 |
"PyPDF2",
|
|
|
420 |
"SpeechRecognition",
|
421 |
+
"pydub"
|
|
|
|
|
|
|
|
|
422 |
]
|
423 |
|
424 |
+
print("π Multimodal Chatbot with Gemma 3n")
|
425 |
print("=" * 50)
|
426 |
print("Required packages:", ", ".join(required_packages))
|
427 |
print("\nπ¦ To install: pip install " + " ".join(required_packages))
|
|
|
432 |
print("π‘ Enter your API key in the web interface when it loads")
|
433 |
|
434 |
demo = create_interface()
|
435 |
+
demo.launch(
|
436 |
+
share=True
|
437 |
+
)
|