Update app.py
Browse files
app.py
CHANGED
@@ -22,18 +22,19 @@ class MultimodalChatbot:
|
|
22 |
base_url="https://openrouter.ai/api/v1",
|
23 |
api_key=api_key,
|
24 |
)
|
25 |
-
self.model = "google/gemma-
|
26 |
self.conversation_history = []
|
27 |
# Initialize the pipeline for image-text-to-text processing
|
28 |
try:
|
29 |
self.pipe = pipeline(
|
30 |
-
"image-
|
31 |
-
model="
|
32 |
device="cpu", # Optimized for CPU in HF Spaces
|
33 |
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
34 |
)
|
|
|
35 |
except Exception as e:
|
36 |
-
print(f"Error initializing pipeline: {e}")
|
37 |
self.pipe = None
|
38 |
|
39 |
def encode_image_to_base64(self, image) -> str:
|
@@ -130,21 +131,28 @@ class MultimodalChatbot:
|
|
130 |
|
131 |
cap = cv2.VideoCapture(video_path)
|
132 |
if not cap.isOpened():
|
133 |
-
return None
|
134 |
|
135 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
136 |
if frame_number is None:
|
137 |
frame_number = total_frames // 2 # Extract middle frame
|
|
|
|
|
|
|
138 |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
139 |
ret, frame = cap.read()
|
140 |
cap.release()
|
141 |
if ret:
|
142 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
143 |
-
return Image.fromarray(frame)
|
144 |
else:
|
145 |
-
return None
|
146 |
except Exception as e:
|
147 |
-
return None
|
148 |
|
149 |
def create_multimodal_message(self,
|
150 |
text_input: str = "",
|
@@ -175,11 +183,13 @@ class MultimodalChatbot:
|
|
175 |
image = Image.open(image_file)
|
176 |
else:
|
177 |
image = image_file
|
178 |
-
# Use
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
183 |
processing_info.append("πΌοΈ Image analyzed")
|
184 |
except Exception as e:
|
185 |
content_parts.append({"type": "text", "text": f"Error analyzing image: {str(e)}"})
|
@@ -189,20 +199,21 @@ class MultimodalChatbot:
|
|
189 |
processing_info.append("πΌοΈ Image received (analysis failed)")
|
190 |
|
191 |
if video_file is not None and self.pipe is not None:
|
192 |
-
frame = self.extract_video_frame(video_file)
|
193 |
if frame:
|
194 |
try:
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
200 |
processing_info.append("π₯ Video frame analyzed")
|
201 |
except Exception as e:
|
202 |
-
content_parts.append({"type": "text", "text": f"Error analyzing video frame: {str(e)}"})
|
203 |
processing_info.append("π₯ Video frame analysis failed")
|
204 |
else:
|
205 |
-
content_parts.append({"type": "text", "text": "Could not extract frame from video. Please describe the video."})
|
206 |
processing_info.append("π₯ Video processing failed")
|
207 |
elif video_file is not None:
|
208 |
content_parts.append({"type": "text", "text": "Video uploaded. Analysis failed due to model initialization error."})
|
@@ -246,7 +257,7 @@ class MultimodalChatbot:
|
|
246 |
completion = self.client.chat.completions.create(
|
247 |
extra_headers={
|
248 |
"HTTP-Referer": "https://multimodal-chatbot.local",
|
249 |
-
"X-Title": "
|
250 |
},
|
251 |
model=self.model,
|
252 |
messages=messages,
|
@@ -264,16 +275,16 @@ class MultimodalChatbot:
|
|
264 |
|
265 |
def create_interface():
|
266 |
"""Create the Gradio interface"""
|
267 |
-
with gr.Blocks(title="Multimodal Chatbot with Gemma
|
268 |
gr.Markdown("""
|
269 |
-
# π€ Multimodal Chatbot with Gemma
|
270 |
|
271 |
This chatbot can process multiple types of input:
|
272 |
-
- **Text**: Regular text messages
|
273 |
- **PDF**: Extract and analyze document content
|
274 |
- **Audio**: Transcribe speech to text (supports WAV, MP3, M4A, FLAC)
|
275 |
-
- **Images**: Upload images for analysis using
|
276 |
-
- **Video**: Upload videos for basic frame analysis using
|
277 |
|
278 |
**Setup**: Enter your OpenRouter API key below to get started
|
279 |
""")
|
@@ -514,14 +525,18 @@ def create_interface():
|
|
514 |
api_key_input.change(
|
515 |
validate_api_key,
|
516 |
inputs=[api_key_input],
|
517 |
-
|
|
|
518 |
image_submit_btn, video_submit_btn, combined_submit_btn]
|
519 |
)
|
520 |
|
521 |
text_submit_btn.click(
|
522 |
process_text_input,
|
523 |
inputs=[api_key_input, text_input, text_chatbot],
|
524 |
-
outputs=[text_chatbot,
|
|
|
|
|
|
|
525 |
)
|
526 |
text_input.submit(
|
527 |
process_text_input,
|
@@ -571,7 +586,7 @@ def create_interface():
|
|
571 |
gr.Markdown("""
|
572 |
### π― How to Use Each Tab:
|
573 |
|
574 |
-
**π¬ Text Chat**: Simple text conversations with the AI
|
575 |
|
576 |
**π PDF Chat**: Upload a PDF and ask questions about its content
|
577 |
|
@@ -579,10 +594,10 @@ def create_interface():
|
|
579 |
- Supports: WAV, MP3, M4A, FLAC, OGG formats
|
580 |
- Best results with clear speech and minimal background noise
|
581 |
|
582 |
-
**πΌοΈ Image Chat**: Upload images for analysis using
|
583 |
- Provide a text prompt to guide the analysis (e.g., "What is in this image?")
|
584 |
|
585 |
-
**π₯ Video Chat**: Upload videos for basic frame analysis using
|
586 |
- Analysis is based on a single frame; provide a text description for full video context
|
587 |
|
588 |
**π Combined Chat**: Use multiple input types together for comprehensive analysis
|
@@ -598,6 +613,7 @@ def create_interface():
|
|
598 |
- Image and video analysis may be slow on CPU in Hugging Face Spaces
|
599 |
- Video analysis is limited to a single frame due to CPU constraints
|
600 |
- Large files may take longer to process
|
|
|
601 |
""")
|
602 |
|
603 |
return demo
|
@@ -616,7 +632,7 @@ if __name__ == "__main__":
|
|
616 |
"torch"
|
617 |
]
|
618 |
|
619 |
-
print("π Multimodal Chatbot with Gemma
|
620 |
print("=" * 50)
|
621 |
print("Required packages:", ", ".join(required_packages))
|
622 |
print("\nπ¦ To install: pip install " + " ".join(required_packages))
|
|
|
22 |
base_url="https://openrouter.ai/api/v1",
|
23 |
api_key=api_key,
|
24 |
)
|
25 |
+
self.model = "google/gemma-2-9b-it:free" # Updated to a valid text model
|
26 |
self.conversation_history = []
|
27 |
# Initialize the pipeline for image-text-to-text processing
|
28 |
try:
|
29 |
self.pipe = pipeline(
|
30 |
+
"image-captioning",
|
31 |
+
model="Salesforce/blip-image-captioning-base",
|
32 |
device="cpu", # Optimized for CPU in HF Spaces
|
33 |
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
34 |
)
|
35 |
+
print("Image captioning pipeline initialized successfully")
|
36 |
except Exception as e:
|
37 |
+
print(f"Error initializing image captioning pipeline: {str(e)}")
|
38 |
self.pipe = None
|
39 |
|
40 |
def encode_image_to_base64(self, image) -> str:
|
|
|
131 |
|
132 |
cap = cv2.VideoCapture(video_path)
|
133 |
if not cap.isOpened():
|
134 |
+
return None, "Could not open video file"
|
135 |
|
136 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
137 |
+
if total_frames <= 0:
|
138 |
+
cap.release()
|
139 |
+
return None, "Video has no frames"
|
140 |
+
|
141 |
if frame_number is None:
|
142 |
frame_number = total_frames // 2 # Extract middle frame
|
143 |
+
if frame_number >= total_frames:
|
144 |
+
frame_number = total_frames - 1
|
145 |
+
|
146 |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
147 |
ret, frame = cap.read()
|
148 |
cap.release()
|
149 |
if ret:
|
150 |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
151 |
+
return Image.fromarray(frame), f"Extracted frame {frame_number} of {total_frames}"
|
152 |
else:
|
153 |
+
return None, "Failed to extract frame"
|
154 |
except Exception as e:
|
155 |
+
return None, f"Error extracting video frame: {str(e)}"
|
156 |
|
157 |
def create_multimodal_message(self,
|
158 |
text_input: str = "",
|
|
|
183 |
image = Image.open(image_file)
|
184 |
else:
|
185 |
image = image_file
|
186 |
+
# Use BLIP model for image captioning
|
187 |
+
output = self.pipe(image)
|
188 |
+
description = output[0]['generated_caption']
|
189 |
+
if text_input:
|
190 |
+
content_parts.append({"type": "text", "text": f"Image analysis (based on '{text_input}'): {description}"})
|
191 |
+
else:
|
192 |
+
content_parts.append({"type": "text", "text": f"Image analysis: {description}"})
|
193 |
processing_info.append("πΌοΈ Image analyzed")
|
194 |
except Exception as e:
|
195 |
content_parts.append({"type": "text", "text": f"Error analyzing image: {str(e)}"})
|
|
|
199 |
processing_info.append("πΌοΈ Image received (analysis failed)")
|
200 |
|
201 |
if video_file is not None and self.pipe is not None:
|
202 |
+
frame, frame_info = self.extract_video_frame(video_file)
|
203 |
if frame:
|
204 |
try:
|
205 |
+
output = self.pipe(frame)
|
206 |
+
description = output[0]['generated_caption']
|
207 |
+
if text_input:
|
208 |
+
content_parts.append({"type": "text", "text": f"Video frame analysis (based on '{text_input}'): {description}. Frame info: {frame_info}. Please describe the video for further assistance."})
|
209 |
+
else:
|
210 |
+
content_parts.append({"type": "text", "text": f"Video frame analysis: {description}. Frame info: {frame_info}. Please describe the video for further assistance."})
|
211 |
processing_info.append("π₯ Video frame analyzed")
|
212 |
except Exception as e:
|
213 |
+
content_parts.append({"type": "text", "text": f"Error analyzing video frame: {str(e)}. Frame info: {frame_info}"})
|
214 |
processing_info.append("π₯ Video frame analysis failed")
|
215 |
else:
|
216 |
+
content_parts.append({"type": "text", "text": f"Could not extract frame from video: {frame_info}. Please describe the video."})
|
217 |
processing_info.append("π₯ Video processing failed")
|
218 |
elif video_file is not None:
|
219 |
content_parts.append({"type": "text", "text": "Video uploaded. Analysis failed due to model initialization error."})
|
|
|
257 |
completion = self.client.chat.completions.create(
|
258 |
extra_headers={
|
259 |
"HTTP-Referer": "https://multimodal-chatbot.local",
|
260 |
+
"X-Title": "Mult Mosaic Chatbot",
|
261 |
},
|
262 |
model=self.model,
|
263 |
messages=messages,
|
|
|
275 |
|
276 |
def create_interface():
|
277 |
"""Create the Gradio interface"""
|
278 |
+
with gr.Blocks(title="Multimodal Chatbot with BLIP and Gemma", theme=gr.themes.Soft()) as demo:
|
279 |
gr.Markdown("""
|
280 |
+
# π€ Multimodal Chatbot with BLIP and Gemma
|
281 |
|
282 |
This chatbot can process multiple types of input:
|
283 |
+
- **Text**: Regular text messages using Gemma
|
284 |
- **PDF**: Extract and analyze document content
|
285 |
- **Audio**: Transcribe speech to text (supports WAV, MP3, M4A, FLAC)
|
286 |
+
- **Images**: Upload images for analysis using BLIP
|
287 |
+
- **Video**: Upload videos for basic frame analysis using BLIP
|
288 |
|
289 |
**Setup**: Enter your OpenRouter API key below to get started
|
290 |
""")
|
|
|
525 |
api_key_input.change(
|
526 |
validate_api_key,
|
527 |
inputs=[api_key_input],
|
528 |
+
Β F
|
529 |
+
outputs=[api_status, text_submit_btn, pdf pimodalChatbotdf_submit_btn, audio_submit_btn,
|
530 |
image_submit_btn, video_submit_btn, combined_submit_btn]
|
531 |
)
|
532 |
|
533 |
text_submit_btn.click(
|
534 |
process_text_input,
|
535 |
inputs=[api_key_input, text_input, text_chatbot],
|
536 |
+
outputs=[text_chatbot, text upset_btn.click(
|
537 |
+
process_pdf_input,
|
538 |
+
inputs=[api_key_input, pdf_input, pdf_text_input, pdf_chatbot],
|
539 |
+
outputs=[pdf_chatbot, pdf_text_input]
|
540 |
)
|
541 |
text_input.submit(
|
542 |
process_text_input,
|
|
|
586 |
gr.Markdown("""
|
587 |
### π― How to Use Each Tab:
|
588 |
|
589 |
+
**π¬ Text Chat**: Simple text conversations with the AI using Gemma
|
590 |
|
591 |
**π PDF Chat**: Upload a PDF and ask questions about its content
|
592 |
|
|
|
594 |
- Supports: WAV, MP3, M4A, FLAC, OGG formats
|
595 |
- Best results with clear speech and minimal background noise
|
596 |
|
597 |
+
**πΌοΈ Image Chat**: Upload images for analysis using BLIP
|
598 |
- Provide a text prompt to guide the analysis (e.g., "What is in this image?")
|
599 |
|
600 |
+
**π₯ Video Chat**: Upload videos for basic frame analysis using BLIP
|
601 |
- Analysis is based on a single frame; provide a text description for full video context
|
602 |
|
603 |
**π Combined Chat**: Use multiple input types together for comprehensive analysis
|
|
|
613 |
- Image and video analysis may be slow on CPU in Hugging Face Spaces
|
614 |
- Video analysis is limited to a single frame due to CPU constraints
|
615 |
- Large files may take longer to process
|
616 |
+
- BLIP model may provide basic captions; detailed video descriptions require additional user input
|
617 |
""")
|
618 |
|
619 |
return demo
|
|
|
632 |
"torch"
|
633 |
]
|
634 |
|
635 |
+
print("π Multimodal Chatbot with BLIP and Gemma")
|
636 |
print("=" * 50)
|
637 |
print("Required packages:", ", ".join(required_packages))
|
638 |
print("\nπ¦ To install: pip install " + " ".join(required_packages))
|