shukdevdattaEX's picture
Update app.py
46c2b45 verified
raw
history blame
18.6 kB
import os
import re
import json
import math
import gradio as gr
from typing import List, Dict, Any, Tuple
from together import Together
# -----------------------------
# Tolerant JSON loader (fixes your error)
# -----------------------------
def _remove_trailing_commas(s: str) -> str:
"""Remove trailing commas before ] or } when not inside strings."""
out = []
in_str = False
esc = False
for i, ch in enumerate(s):
if in_str:
out.append(ch)
if esc:
esc = False
elif ch == '\\':
esc = True
elif ch == '"':
in_str = False
continue
else:
if ch == '"':
in_str = True
out.append(ch)
continue
if ch == ',':
j = i + 1
while j < len(s) and s[j] in ' \t\r\n':
j += 1
if j < len(s) and s[j] in ']}':
# skip this comma
continue
out.append(ch)
return ''.join(out)
def _extract_json_objects(text: str) -> List[str]:
"""Extract top-level JSON objects by balancing curly braces, ignoring braces inside strings."""
objs = []
in_str = False
esc = False
brace_depth = 0
start = None
for i, ch in enumerate(text):
if in_str:
if esc:
esc = False
elif ch == '\\':
esc = True
elif ch == '"':
in_str = False
else:
if ch == '"':
in_str = True
elif ch == '{':
if brace_depth == 0:
start = i
brace_depth += 1
elif ch == '}':
if brace_depth > 0:
brace_depth -= 1
if brace_depth == 0 and start is not None:
objs.append(text[start:i+1])
start = None
return objs
def safe_load_phpmyadmin_like_json(raw_text: str) -> List[Dict[str, Any]]:
"""
Attempt strict JSON first; if it fails (e.g., trailing comma issues),
fall back to extracting individual objects and parsing them.
Returns a list of objects (header + tables, etc.).
"""
try:
return json.loads(raw_text)
except json.JSONDecodeError:
# Try removing trailing commas globally
cleaned = _remove_trailing_commas(raw_text)
try:
return json.loads(cleaned)
except json.JSONDecodeError:
# Last-resort: parse object-by-object and combine into an array
chunks = _extract_json_objects(raw_text)
objs = []
for ch in chunks:
s = _remove_trailing_commas(ch)
try:
objs.append(json.loads(s))
except json.JSONDecodeError:
# If a chunk is still bad, skip it rather than crashing
# (you can log or collect stats if you want)
continue
return objs
# -----------------------------
# Enhanced corpus building with better indexing
# -----------------------------
def flatten_json_to_corpus(docs: List[Dict[str, Any]], max_value_len: int = 1000) -> List[Dict[str, Any]]:
"""
Turn the exported structure into searchable text chunks with enhanced indexing.
Creates multiple representations of the same data for better retrieval.
"""
corpus = []
def extract_all_text_values(obj, prefix=""):
"""Recursively extract all text values from nested objects/arrays"""
texts = []
if isinstance(obj, dict):
for k, v in obj.items():
key_path = f"{prefix}.{k}" if prefix else k
if isinstance(v, (dict, list)):
texts.extend(extract_all_text_values(v, key_path))
else:
val_str = str(v).strip()
if val_str and val_str.lower() not in ['null', 'none', '']:
texts.append(f"{k}: {val_str}")
elif isinstance(obj, list):
for i, item in enumerate(obj):
texts.extend(extract_all_text_values(item, f"{prefix}[{i}]"))
else:
val_str = str(obj).strip()
if val_str and val_str.lower() not in ['null', 'none', '']:
texts.append(val_str)
return texts
for obj_idx, obj in enumerate(docs):
obj_type = obj.get("type", "unknown")
if obj_type == "table":
table_name = obj.get("name", f"table_{obj_idx}")
rows = obj.get("data", [])
if isinstance(rows, list):
# Create entries for individual rows
for row_idx, row in enumerate(rows):
if isinstance(row, dict):
# Standard row representation
parts = []
all_values = []
for k, v in row.items():
val = str(v).strip()
if len(val) > max_value_len:
val = val[:max_value_len] + "…"
if val and val.lower() not in ['null', 'none', '']:
parts.append(f"{k}={val}")
all_values.append(val)
# Main row text
row_text = f"[table={table_name} row={row_idx}] " + " | ".join(parts)
corpus.append({
"table": table_name,
"idx": row_idx,
"text": row_text,
"type": "row",
"raw_data": row
})
# Also create a searchable version with just values for name searches
if all_values:
value_text = f"[table={table_name} row={row_idx}] Contains: " + " ".join(all_values)
corpus.append({
"table": table_name,
"idx": row_idx,
"text": value_text,
"type": "values",
"raw_data": row
})
# Create table summary
if rows:
sample_keys = []
if rows and isinstance(rows[0], dict):
sample_keys = list(rows[0].keys())[:10]
table_summary = f"[table={table_name} summary] Table with {len(rows)} rows. Fields: {', '.join(sample_keys)}"
corpus.append({
"table": table_name,
"idx": -1,
"text": table_summary,
"type": "summary",
"raw_data": {"row_count": len(rows), "fields": sample_keys}
})
else:
# Non-table entries - extract all textual content
all_texts = extract_all_text_values(obj)
if all_texts:
text = f"[{obj_type}] " + " | ".join(all_texts[:20]) # Limit to prevent too long
if len(text) > 2000:
text = text[:2000] + "…"
corpus.append({
"table": obj_type,
"idx": obj_idx,
"text": text,
"type": "meta",
"raw_data": obj
})
return corpus
# -----------------------------
# Enhanced retrieval with multiple scoring methods
# -----------------------------
def _tokenize_enhanced(s: str) -> List[str]:
"""Enhanced tokenization that handles names and phrases better"""
# Keep original words, lowercase versions, and partial matches
tokens = []
# Get word tokens
words = re.findall(r"[A-Za-z0-9_]+", s)
for word in words:
tokens.append(word.lower())
if len(word) > 3:
# Add partial tokens for name matching
tokens.append(word[:4].lower())
# Also extract quoted phrases and camelCase splits
quoted = re.findall(r'"([^"]*)"', s)
for q in quoted:
tokens.extend(q.lower().split())
return tokens
def calculate_enhanced_score(query: str, doc_text: str, doc_data: Dict) -> float:
"""Enhanced scoring that considers multiple factors"""
q_lower = query.lower()
d_lower = doc_text.lower()
score = 0.0
# 1. Exact phrase matching (highest weight)
if q_lower in d_lower:
score += 10.0
# 2. Token-based matching
q_tokens = _tokenize_enhanced(query)
d_tokens = _tokenize_enhanced(doc_text)
if d_tokens:
q_set = set(q_tokens)
d_set = set(d_tokens)
# Exact token matches
exact_matches = len(q_set & d_set)
score += exact_matches * 2.0
# Partial matches for names
for q_tok in q_tokens:
if len(q_tok) > 2:
for d_tok in d_tokens:
if q_tok in d_tok or d_tok in q_tok:
score += 0.5
# Length normalization
score = score / math.log2(len(d_tokens) + 2)
# 3. Boost for certain types of content
if "instructor" in q_lower and "instructor" in d_lower:
score += 5.0
if "batch" in q_lower and "batch" in d_lower:
score += 3.0
# Boost for rows vs summaries when looking for specific info
if any(word in q_lower for word in ["who", "name", "person"]):
if doc_data.get("type") == "row":
score += 2.0
return score
def retrieve_top_k_enhanced(query: str, corpus: List[Dict[str, Any]], k: int = 15, per_table_cap: int = 8) -> List[Dict[str, Any]]:
"""Enhanced retrieval with better scoring and diversity"""
# Score every document
scored = []
for doc in corpus:
score = calculate_enhanced_score(query, doc["text"], doc)
if score > 0:
scored.append((score, doc))
# Sort by score
scored.sort(key=lambda x: x[0], reverse=True)
# Apply diversity constraints
table_counts = {}
type_counts = {}
result = []
for score, doc in scored:
table_name = doc.get("table", "unknown")
doc_type = doc.get("type", "unknown")
# Check table limit
if table_counts.get(table_name, 0) >= per_table_cap:
continue
# Prefer diverse content types
if type_counts.get(doc_type, 0) >= k // 3 and len(result) > k // 2:
continue
result.append(doc)
table_counts[table_name] = table_counts.get(table_name, 0) + 1
type_counts[doc_type] = type_counts.get(doc_type, 0) + 1
if len(result) >= k:
break
# If no good matches, return some diverse samples
if len(result) < 3:
fallback = [doc for _, doc in scored[:k]]
result.extend(fallback)
result = result[:k]
return result
# -----------------------------
# Enhanced prompt building
# -----------------------------
def build_enhanced_prompt(query: str, passages: List[Dict[str, Any]]) -> str:
"""Build a more comprehensive prompt with structured context"""
context_sections = []
table_summaries = []
for passage in passages:
if passage.get("type") == "summary":
table_summaries.append(passage["text"])
else:
context_sections.append(passage["text"])
# Combine contexts
table_context = "\n".join(table_summaries) if table_summaries else ""
detail_context = "\n\n".join(context_sections)
prompt = f"""You are a thorough JSON database assistant. Answer using ONLY the provided context from the JSON export.
# User Question
{query}
# Available Tables Summary
{table_context}
# Detailed Context (Most Relevant Entries)
{detail_context}
# Instructions
- Search through ALL provided context thoroughly
- For person names, look for partial matches and variations
- For roles like "instructor" or "teacher", check all relevant entries
- If asking about people, include their roles, associations, and related info
- Cite specific table names and row indices when possible
- If information exists in the context but seems incomplete, mention what you found
- Only say "not found" if you genuinely cannot locate relevant information after thorough checking
- Be comprehensive - don't just return the first match you find"""
return prompt
# -----------------------------
# Together client helper
# -----------------------------
def call_together(api_key: str, prompt: str) -> str:
if not api_key or not api_key.strip():
return "⚠️ Please enter your Together API key."
try:
# Set env and client to ensure the SDK picks it up everywhere
os.environ["TOGETHER_API_KEY"] = api_key.strip()
client = Together(api_key=api_key.strip())
resp = client.chat.completions.create(
model="lgai/exaone-3-5-32b-instruct",
messages=[{"role": "user", "content": prompt}],
temperature=0.1, # Lower temperature for more focused responses
max_tokens=1000,
)
return resp.choices[0].message.content
except Exception as e:
return f"❌ API Error: {str(e)}"
# -----------------------------
# Gradio App
# -----------------------------
with gr.Blocks(title="Enhanced JSON Chatbot") as demo:
gr.Markdown("## πŸ“š Enhanced JSON Chatbot (Together Exaone 3.5 32B)\nUpload your JSON export and ask questions. Enhanced retrieval system for better name and role matching.")
with gr.Row():
api_key_tb = gr.Textbox(label="Together API Key", type="password", placeholder="Paste your TOGETHER_API_KEY here")
topk_slider = gr.Slider(5, 30, value=15, step=1, label="Top-K JSON Passages")
with gr.Row():
json_file = gr.File(label="Upload JSON export (e.g., phpMyAdmin export)", file_count="single", file_types=[".json"])
fallback_path = gr.Textbox(label="Or fixed path on disk (optional)", placeholder="e.g., sultanbr_innovativeskills.json")
with gr.Accordion("Advanced Settings", open=False):
per_table_cap = gr.Slider(3, 15, value=8, step=1, label="Max passages per table")
max_val_len = gr.Slider(200, 2000, value=1000, step=100, label="Max value length per field")
status = gr.Markdown("πŸ”„ Ready. Upload JSON file to begin.")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(height=500)
user_box = gr.Textbox(
label="Ask about your JSON data...",
placeholder="e.g., Who are the batch instructors? or Who is Shukdev Datta?",
lines=2
)
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary", size="sm")
reload_btn = gr.Button("Reload JSON", variant="secondary", size="sm")
# States
state_corpus = gr.State([])
state_docs = gr.State([])
def load_json_to_corpus(file_obj, path_text, max_value_len):
"""Load JSON and build enhanced corpus"""
try:
if file_obj is not None:
with open(file_obj.name, "r", encoding="utf-8", errors="replace") as f:
raw = f.read()
source = f"uploaded file: {file_obj.name}"
else:
p = (path_text or "").strip()
if not p:
return ("⚠️ Please upload a JSON file or provide a valid path.", [], [])
with open(p, "r", encoding="utf-8", errors="replace") as f:
raw = f.read()
source = f"file path: {p}"
docs = safe_load_phpmyadmin_like_json(raw)
if not isinstance(docs, list):
docs = [docs]
corpus = flatten_json_to_corpus(docs, max_value_len=int(max_value_len))
# Count tables vs other objects
tables = [d for d in docs if d.get("type") == "table"]
status_msg = f"βœ… Loaded from {source}\n"
status_msg += f"πŸ“Š {len(docs)} objects total, {len(tables)} tables\n"
status_msg += f"πŸ” Built {len(corpus)} searchable passages\n"
status_msg += f"πŸ’¬ Ready for questions!"
return (status_msg, corpus, docs)
except Exception as e:
return (f"❌ Load error: {str(e)}", [], [])
def ask_enhanced(api_key, query, history, corpus, k, cap):
if not corpus:
return history + [[query, "⚠️ Please upload and load the JSON file first."]]
if not query or not query.strip():
return history + [["", "⚠️ Please enter a question."]]
# Enhanced retrieval
top_passages = retrieve_top_k_enhanced(query.strip(), corpus, k=int(k), per_table_cap=int(cap))
# Build enhanced prompt
prompt = build_enhanced_prompt(query.strip(), top_passages)
try:
answer = call_together(api_key, prompt)
except Exception as e:
answer = f"❌ API error: {str(e)}"
history = history + [[query, answer]]
return history
# Event handlers
json_file.upload(
load_json_to_corpus,
inputs=[json_file, fallback_path, max_val_len],
outputs=[status, state_corpus, state_docs],
)
fallback_path.change(
load_json_to_corpus,
inputs=[json_file, fallback_path, max_val_len],
outputs=[status, state_corpus, state_docs],
)
user_box.submit(
ask_enhanced,
inputs=[api_key_tb, user_box, chatbot, state_corpus, topk_slider, per_table_cap],
outputs=[chatbot],
).then(lambda: "", outputs=[user_box]) # Clear input after submit
reload_btn.click(
load_json_to_corpus,
inputs=[json_file, fallback_path, max_val_len],
outputs=[status, state_corpus, state_docs],
)
clear_btn.click(
lambda: ([], "πŸ”„ Chat cleared. Ready for new questions."),
outputs=[chatbot, user_box]
)
if __name__ == "__main__":
demo.launch()