File size: 46,462 Bytes
bd29ac8
 
 
 
 
 
 
 
4bd696b
 
bd29ac8
 
 
 
4bd696b
 
 
 
4364505
4bd696b
 
 
 
 
 
 
 
 
2eed96a
4bd696b
 
 
2eed96a
4bd696b
 
 
 
 
2eed96a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4364505
 
2eed96a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd696b
bd29ac8
 
4bd696b
bd29ac8
 
4bd696b
bd29ac8
 
 
 
4bd696b
 
 
bd29ac8
4364505
 
4bd696b
 
 
 
bd29ac8
4364505
4bd696b
 
bd29ac8
 
 
 
4bd696b
 
598b26d
bd29ac8
 
4bd696b
 
 
 
 
 
 
 
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4364505
 
 
 
 
2eed96a
bd29ac8
2eed96a
 
96d4232
ba15419
 
 
 
 
 
 
 
 
dfc2805
 
2eed96a
 
4364505
 
2eed96a
4364505
 
2eed96a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd29ac8
 
 
598b26d
2eed96a
 
bd29ac8
2eed96a
bd29ac8
 
4364505
 
 
bd29ac8
4364505
 
 
 
 
bd29ac8
 
 
 
 
 
 
 
4bd696b
bd29ac8
 
2eed96a
bd29ac8
4364505
 
 
 
 
 
 
 
bd29ac8
598b26d
bd29ac8
 
598b26d
 
 
bd29ac8
 
 
 
 
 
 
4bd696b
 
2eed96a
 
4bd696b
598b26d
4364505
 
 
 
 
 
2eed96a
4bd696b
2eed96a
4bd696b
 
4364505
 
 
 
 
 
598b26d
4bd696b
598b26d
 
bd29ac8
 
 
 
 
 
 
 
598b26d
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598b26d
bd29ac8
 
 
 
 
 
 
598b26d
 
bd29ac8
 
 
 
4364505
 
bd29ac8
 
4364505
 
 
bd29ac8
4364505
bd29ac8
4364505
 
 
 
bd29ac8
 
 
598b26d
 
 
bd29ac8
4364505
 
 
bd29ac8
4364505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd29ac8
 
 
 
 
 
fa91193
 
4364505
bd29ac8
4364505
4bd696b
bd29ac8
 
 
fa91193
 
4364505
bd29ac8
4364505
bd29ac8
4364505
2eed96a
4bd696b
4364505
bd29ac8
4364505
bd29ac8
4364505
bd29ac8
 
 
fa91193
 
4364505
bd29ac8
4364505
 
bd29ac8
 
 
4364505
bd29ac8
4364505
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd696b
 
bd29ac8
 
4364505
 
 
 
fa91193
4364505
bd29ac8
4bd696b
 
4364505
4bd696b
 
bd29ac8
 
4bd696b
 
 
 
 
 
 
 
 
 
 
 
 
 
bd29ac8
4bd696b
bd29ac8
 
 
 
 
 
 
 
 
 
 
4bd696b
bd29ac8
 
 
 
4bd696b
bd29ac8
 
 
 
 
4364505
 
bd29ac8
 
 
 
 
 
 
 
 
 
4bd696b
bd29ac8
4bd696b
bd29ac8
 
 
 
 
 
4364505
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
4bd696b
 
 
 
 
 
 
 
 
bd29ac8
 
 
 
4bd696b
4364505
bd29ac8
 
4364505
 
 
 
 
 
bd29ac8
4364505
 
fa91193
 
 
bd29ac8
 
4bd696b
bd29ac8
 
 
 
 
 
 
 
 
 
4364505
bd29ac8
2eed96a
 
bd29ac8
 
 
 
 
 
 
 
 
 
4364505
bd29ac8
 
 
 
 
 
2eed96a
bd29ac8
4364505
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
 
2eed96a
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598b26d
bd29ac8
 
 
 
 
 
 
 
598b26d
bd29ac8
2eed96a
bd29ac8
 
 
 
dfc2805
bd29ac8
 
 
 
4bd696b
bd29ac8
 
 
 
 
 
598b26d
bd29ac8
2eed96a
 
bd29ac8
 
 
 
 
2eed96a
bd29ac8
2eed96a
bd29ac8
 
 
2eed96a
bd29ac8
 
 
 
 
4bd696b
bd29ac8
 
 
 
 
4bd696b
 
 
 
 
 
e0f67b5
 
 
 
 
3667b6c
e0f67b5
 
 
598b26d
e0f67b5
 
 
 
 
 
 
4bd696b
 
e0f67b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598b26d
e0f67b5
 
 
 
 
 
 
598b26d
e0f67b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd696b
bd29ac8
 
598b26d
 
 
bd29ac8
 
598b26d
bd29ac8
598b26d
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd696b
598b26d
4bd696b
598b26d
 
4bd696b
bd29ac8
 
 
598b26d
 
 
4bd696b
598b26d
bd29ac8
 
 
 
 
 
 
 
 
598b26d
bd29ac8
 
 
 
 
 
 
598b26d
bd29ac8
4bd696b
bd29ac8
 
 
 
 
598b26d
 
 
 
bd29ac8
598b26d
bd29ac8
598b26d
bd29ac8
598b26d
 
 
 
 
 
 
bd29ac8
598b26d
bd29ac8
 
 
 
598b26d
bd29ac8
598b26d
bd29ac8
598b26d
bd29ac8
598b26d
bd29ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfc2805
bd29ac8
598b26d
bd29ac8
 
598b26d
 
4bd696b
598b26d
 
 
bd29ac8
 
598b26d
 
 
bd29ac8
 
 
 
 
4bd696b
598b26d
 
bd29ac8
 
 
 
 
 
 
 
 
 
fa91193
e0f67b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
import os
import json
import time
import gradio as gr
from datetime import datetime
from typing import List, Dict, Any, Optional, Union
import threading
import re
import aiohttp
import asyncio

# Import Groq
from groq import Groq

class ChutesClient:
    """Client for interacting with Chutes API"""
    
    def __init__(self, api_key: str):
        self.api_key = api_key or ""
        self.base_url = "https://llm.chutes.ai/v1"
        
    async def chat_completions_create(self, **kwargs) -> Dict:
        """Make async request to Chutes chat completions endpoint"""
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }
        
        # Prepare the body for Chutes API
        body = {
            "model": kwargs.get("model", "openai/gpt-oss-20b"),
            "messages": kwargs.get("messages", []),
            "stream": kwargs.get("stream", False),
            "max_tokens": kwargs.get("max_tokens", 1024),
            "temperature": kwargs.get("temperature", 0.7)
        }
        
        async with aiohttp.ClientSession() as session:
            if body["stream"]:
                # Handle streaming response
                async with session.post(
                    f"{self.base_url}/chat/completions",
                    headers=headers,
                    json=body
                ) as response:
                    if response.status != 200:
                        raise Exception(f"Chutes API error: {await response.text()}")
                    
                    content = ""
                    async for line in response.content:
                        line = line.decode("utf-8").strip()
                        if line.startswith("data: "):
                            data = line[6:]
                            if data == "[DONE]":
                                break
                            try:
                                if data.strip():
                                    chunk_json = json.loads(data)
                                    if "choices" in chunk_json and len(chunk_json["choices"]) > 0:
                                        delta = chunk_json["choices"][0].get("delta", {})
                                        if "content" in delta and delta["content"]:
                                            content += str(delta["content"])
                            except json.JSONDecodeError:
                                continue
                    
                    # Return in OpenAI format for compatibility
                    return {
                        "choices": [{
                            "message": {
                                "content": content,
                                "role": "assistant"
                            }
                        }]
                    }
            else:
                # Handle non-streaming response
                async with session.post(
                    f"{self.base_url}/chat/completions",
                    headers=headers,
                    json=body
                ) as response:
                    if response.status != 200:
                        raise Exception(f"Chutes API error: {await response.text()}")
                    return await response.json()

class CreativeAgenticAI:
    """
    Creative Agentic AI Chat Tool using Groq and Chutes models with browser search and compound models
    """
    
    def __init__(self, groq_api_key: str, chutes_api_key: str, model: str = "compound-beta"):
        """
        Initialize the Creative Agentic AI system.
        
        Args:
            groq_api_key: Groq API key
            chutes_api_key: Chutes API key
            model: Which model to use
        """
        self.groq_api_key = str(groq_api_key) if groq_api_key else ""
        self.chutes_api_key = str(chutes_api_key) if chutes_api_key else ""
        if not self.groq_api_key and model != "openai/gpt-oss-20b":
            raise ValueError("No Groq API key provided")
        if not self.chutes_api_key and model == "openai/gpt-oss-20b":
            raise ValueError("No Chutes API key provided")
        
        self.model = str(model) if model else "compound-beta"
        self.groq_client = Groq(api_key=self.groq_api_key) if self.groq_api_key else None
        self.chutes_client = ChutesClient(api_key=self.chutes_api_key) if self.chutes_api_key else None
        self.conversation_history = []
        
        # Available models with their capabilities
        self.available_models = {
            "compound-beta": {"supports_web_search": True, "supports_browser_search": False, "api": "groq"},
            "compound-beta-mini": {"supports_web_search": True, "supports_browser_search": False, "api": "groq"},
            "openai/gpt-oss-20b": {"supports_web_search": False, "supports_browser_search": False, "api": "chutes"},
        }
        
    async def chat(self, message: str, 
                  include_domains: List[str] = None,
                  exclude_domains: List[str] = None,
                  system_prompt: str = None,
                  temperature: float = 0.7,
                  max_tokens: int = 1024,
                  search_type: str = "auto",
                  force_search: bool = False) -> Dict:
        """
        Send a message to the AI and get a response with flexible search options
        
        Args:
            message: User's message
            include_domains: List of domains to include for web search
            exclude_domains: List of domains to exclude from web search
            system_prompt: Custom system prompt
            temperature: Model temperature (0.0-2.0)
            max_tokens: Maximum tokens in response
            search_type: 'web_search', 'browser_search', 'auto', or 'none'
            force_search: Force the AI to use search tools
            
        Returns:
            AI response with metadata
        """
        # Safe string conversion
        message = str(message) if message else ""
        system_prompt = str(system_prompt) if system_prompt else ""
        search_type = str(search_type) if search_type else "auto"
        
        # Enhanced system prompt for better behavior
        if not system_prompt:
            if self.model == "openai/gpt-oss-20b":
                # Simple, direct system prompt for Chutes model
                system_prompt = """You are a helpful, knowledgeable AI assistant. Provide direct, clear, complete and informative responses to user questions. Be concise but thorough. Do not include internal reasoning or commentary - just give the answer the user is looking for. Please also cite the source urls from where you got the informations."""
            else:
                # Enhanced system prompt for Groq models with search capabilities
                citation_instruction = """
IMPORTANT: When you search the web and find information, you MUST:
1. Always cite your sources with clickable links in this format: [Source Title](URL)
2. Include multiple diverse sources when possible
3. Show which specific websites you used for each claim
4. At the end of your response, provide a "Sources Used" section with all the links
5. Be transparent about which information comes from which source
"""
                
                domain_context = ""
                if include_domains and self._supports_web_search():
                    safe_domains = [str(d) for d in include_domains if d]
                    domain_context = f"\nYou are restricted to searching ONLY these domains: {', '.join(safe_domains)}. Make sure to find and cite sources specifically from these domains."
                elif exclude_domains and self._supports_web_search():
                    safe_domains = [str(d) for d in exclude_domains if d]
                    domain_context = f"\nAvoid searching these domains: {', '.join(safe_domains)}. Search everywhere else on the web."
                
                search_instruction = ""
                if search_type == "browser_search" and self._supports_browser_search():
                    search_instruction = "\nUse browser search tools to find the most current and relevant information from the web."
                elif search_type == "web_search":
                    search_instruction = "\nUse web search capabilities to find relevant information."
                elif force_search:
                    if self._supports_browser_search():
                        search_instruction = "\nYou MUST use search tools to find current information before responding."
                    elif self._supports_web_search():
                        search_instruction = "\nYou MUST use web search to find current information before responding."
                
                system_prompt = f"""You are a creative and intelligent AI assistant with agentic capabilities. 
                You can search the web, analyze information, and provide comprehensive responses. 
                Be helpful, creative, and engaging while maintaining accuracy.
                
                {citation_instruction}
                {domain_context}
                {search_instruction}
                
                Your responses should be well-structured, informative, and properly cited with working links."""
        
        # Build messages
        messages = [{"role": "system", "content": system_prompt}]
        messages.extend(self.conversation_history[-20:])
        
        # Enhanced message for domain filtering (only for Groq models)
        enhanced_message = message
        if (include_domains or exclude_domains) and self._supports_web_search():
            filter_context = []
            if include_domains:
                safe_domains = [str(d) for d in include_domains if d]
                if safe_domains:
                    filter_context.append(f"ONLY search these domains: {', '.join(safe_domains)}")
            if exclude_domains:
                safe_domains = [str(d) for d in exclude_domains if d]
                if safe_domains:
                    filter_context.append(f"EXCLUDE these domains: {', '.join(safe_domains)}")
            if filter_context:
                enhanced_message += f"\n\n[Domain Filtering: {' | '.join(filter_context)}]"
        
        messages.append({"role": "user", "content": enhanced_message})
        
        # Set up API parameters
        params = {
            "messages": messages,
            "model": self.model,
            "temperature": temperature,
            "max_tokens": max_tokens,
        }
        
        # Add domain filtering for compound models (Groq only)
        if self._supports_web_search():
            if include_domains:
                safe_domains = [str(d).strip() for d in include_domains if d and str(d).strip()]
                if safe_domains:
                    params["include_domains"] = safe_domains
            if exclude_domains:
                safe_domains = [str(d).strip() for d in exclude_domains if d and str(d).strip()]
                if safe_domains:
                    params["exclude_domains"] = safe_domains
        
        # Add tools only for Groq models that support browser search
        tools = []
        tool_choice = None
        if self._supports_browser_search():
            if search_type in ["browser_search", "auto"] or force_search:
                tools = [{"type": "browser_search", "function": {"name": "browser_search"}}]
                tool_choice = "required" if force_search else "auto"
        
        if tools:
            params["tools"] = tools
            params["tool_choice"] = tool_choice
        
        try:
            # Make the API call based on model
            if self.available_models[self.model]["api"] == "chutes":
                # Use streaming for better response quality
                params["stream"] = True
                response = await self.chutes_client.chat_completions_create(**params)
                # Handle Chutes response
                content = ""
                if response and "choices" in response and response["choices"]:
                    message_content = response["choices"][0].get("message", {}).get("content")
                    content = str(message_content) if message_content else "No response content"
                else:
                    content = "No response received"
                tool_calls = None
            else:
                # Groq API call
                params["max_completion_tokens"] = params.pop("max_tokens", None)
                response = self.groq_client.chat.completions.create(**params)
                content = ""
                if response and response.choices and response.choices[0].message:
                    message_content = response.choices[0].message.content
                    content = str(message_content) if message_content else "No response content"
                else:
                    content = "No response received"
                tool_calls = response.choices[0].message.tool_calls if hasattr(response.choices[0].message, "tool_calls") else None
            
            # Extract tool usage information
            tool_info = self._extract_tool_info(response, tool_calls)
            
            # Process content to enhance citations
            processed_content = self._enhance_citations(content, tool_info)
            
            # Add to conversation history
            self.conversation_history.append({"role": "user", "content": message})
            self.conversation_history.append({"role": "assistant", "content": processed_content})
            
            return {
                "content": processed_content,
                "timestamp": datetime.now().isoformat(),
                "model": self.model,
                "tool_usage": tool_info,
                "search_type_used": search_type,
                "parameters": {
                    "temperature": temperature,
                    "max_tokens": max_tokens,
                    "include_domains": include_domains,
                    "exclude_domains": exclude_domains,
                    "force_search": force_search
                }
            }
            
        except Exception as e:
            error_msg = f"Error: {str(e)}"
            self.conversation_history.append({"role": "user", "content": message})
            self.conversation_history.append({"role": "assistant", "content": error_msg})
            
            return {
                "content": error_msg,
                "timestamp": datetime.now().isoformat(),
                "model": self.model,
                "tool_usage": None,
                "error": str(e)
            }
    
    def _supports_web_search(self) -> bool:
        """Check if current model supports web search (compound models)"""
        return self.available_models.get(self.model, {}).get("supports_web_search", False)
    
    def _supports_browser_search(self) -> bool:
        """Check if current model supports browser search tools"""
        return self.available_models.get(self.model, {}).get("supports_browser_search", False)
    
    def _extract_tool_info(self, response, tool_calls) -> Dict:
        """Extract tool usage information in a JSON serializable format"""
        tool_info = {
            "tools_used": [],
            "search_queries": [],
            "sources_found": []
        }
        
        # Handle Groq executed_tools
        if hasattr(response, 'choices') and hasattr(response.choices[0].message, 'executed_tools'):
            tools = response.choices[0].message.executed_tools
            if tools:
                for tool in tools:
                    tool_dict = {
                        "tool_type": str(getattr(tool, "type", "unknown")),
                        "tool_name": str(getattr(tool, "name", "unknown")),
                    }
                    if hasattr(tool, "input"):
                        tool_input = getattr(tool, "input")
                        tool_input_str = str(tool_input) if tool_input is not None else ""
                        tool_dict["input"] = tool_input_str
                        if "search" in tool_dict["tool_name"].lower():
                            tool_info["search_queries"].append(tool_input_str)
                    if hasattr(tool, "output"):
                        tool_output = getattr(tool, "output")
                        tool_output_str = str(tool_output) if tool_output is not None else ""
                        tool_dict["output"] = tool_output_str
                        urls = self._extract_urls(tool_output_str)
                        tool_info["sources_found"].extend(urls)
                    tool_info["tools_used"].append(tool_dict)
        
        # Handle tool_calls for both APIs
        if tool_calls:
            for tool_call in tool_calls:
                tool_dict = {
                    "tool_type": str(getattr(tool_call, "type", "browser_search")),
                    "tool_name": "browser_search",
                    "tool_id": str(getattr(tool_call, "id", "")) if getattr(tool_call, "id", None) else ""
                }
                if hasattr(tool_call, "function") and tool_call.function:
                    tool_dict["tool_name"] = str(getattr(tool_call.function, "name", "browser_search"))
                    if hasattr(tool_call.function, "arguments"):
                        try:
                            args_raw = tool_call.function.arguments
                            if isinstance(args_raw, str):
                                args = json.loads(args_raw)
                            else:
                                args = args_raw or {}
                            tool_dict["arguments"] = args
                            if "query" in args:
                                tool_info["search_queries"].append(str(args["query"]))
                        except:
                            args_str = str(args_raw) if args_raw is not None else ""
                            tool_dict["arguments"] = args_str
                tool_info["tools_used"].append(tool_dict)
        
        return tool_info
    
    def _extract_urls(self, text: str) -> List[str]:
        """Extract URLs from text"""
        if not text:
            return []
        text_str = str(text)
        url_pattern = r'https?://[^\s<>"]{2,}'
        urls = re.findall(url_pattern, text_str)
        return list(set(urls))
    
    def _enhance_citations(self, content: str, tool_info: Dict) -> str:
        """Enhance content with better citation formatting"""
        if not content:
            return ""
        content_str = str(content)
        if not tool_info or not tool_info.get("sources_found"):
            return content_str
        
        if "Sources Used:" not in content_str and "sources:" not in content_str.lower():
            sources_section = "\n\n---\n\n### Sources Used:\n"
            for i, url in enumerate(tool_info["sources_found"][:10], 1):
                domain = self._extract_domain(str(url))
                sources_section += f"{i}. [{domain}]({url})\n"
            content_str += sources_section
        
        return content_str
    
    def _extract_domain(self, url: str) -> str:
        """Extract domain name from URL for display"""
        if not url:
            return ""
        url_str = str(url)
        try:
            if url_str.startswith(('http://', 'https://')):
                domain = url_str.split('/')[2]
                if domain.startswith('www.'):
                    domain = domain[4:]
                return domain
            return url_str
        except:
            return url_str
    
    def get_model_info(self) -> Dict:
        """Get information about current model capabilities"""
        return self.available_models.get(self.model, {})
    
    def clear_history(self):
        """Clear conversation history"""
        self.conversation_history = []
    
    def get_history_summary(self) -> str:
        """Get a summary of conversation history"""
        if not self.conversation_history:
            return "No conversation history"
        
        user_messages = [msg for msg in self.conversation_history if msg["role"] == "user"]
        assistant_messages = [msg for msg in self.conversation_history if msg["role"] == "assistant"]
        
        return f"Conversation: {len(user_messages)} user messages, {len(assistant_messages)} assistant responses"

# Global variables
ai_instance = None
api_key_status = "Not Set"

async def validate_api_keys(groq_api_key: str, chutes_api_key: str, model: str) -> str:
    """Validate both Groq and Chutes API keys and initialize AI instance"""
    global ai_instance, api_key_status
    
    # Handle None values and convert to strings
    groq_api_key = str(groq_api_key) if groq_api_key else ""
    chutes_api_key = str(chutes_api_key) if chutes_api_key else ""
    model = str(model) if model else "compound-beta"
    
    if model == "openai/gpt-oss-20b" and not chutes_api_key.strip():
        api_key_status = "Invalid ❌"
        return "❌ Please enter a valid Chutes API key for the selected model"
    
    if model in ["compound-beta", "compound-beta-mini"] and not groq_api_key.strip():
        api_key_status = "Invalid ❌"
        return "❌ Please enter a valid Groq API key for the selected model"
    
    try:
        if model == "openai/gpt-oss-20b":
            chutes_client = ChutesClient(api_key=chutes_api_key)
            await chutes_client.chat_completions_create(
                messages=[{"role": "user", "content": "Hello"}],
                model=model,
                max_tokens=10
            )
        else:
            groq_client = Groq(api_key=groq_api_key)
            groq_client.chat.completions.create(
                messages=[{"role": "user", "content": "Hello"}],
                model=model,
                max_tokens=10
            )
        
        ai_instance = CreativeAgenticAI(groq_api_key=groq_api_key, chutes_api_key=chutes_api_key, model=model)
        api_key_status = "Valid βœ…"
        
        model_info = ai_instance.get_model_info()
        capabilities = []
        if model_info.get("supports_web_search"):
            capabilities.append("🌐 Web Search with Domain Filtering")
        if model_info.get("supports_browser_search"):
            capabilities.append("πŸ” Browser Search Tools")
        
        cap_text = " | ".join(capabilities) if capabilities else "πŸ’¬ Chat Only"
        
        return f"βœ… API Keys Valid! NeuroScope AI is ready.\n\n**Model:** {model}\n**Capabilities:** {cap_text}\n**API:** {model_info.get('api', 'unknown')}\n**Status:** Connected and ready for chat!"
        
    except Exception as e:
        api_key_status = "Invalid ❌"
        ai_instance = None
        return f"❌ Error validating API key: {str(e)}\n\nPlease check your API keys and try again."

def update_model(model: str) -> str:
    """Update the model selection"""
    global ai_instance
    
    model = str(model) if model else "compound-beta"
    
    if ai_instance:
        ai_instance.model = model
        model_info = ai_instance.get_model_info()
        capabilities = []
        if model_info.get("supports_web_search"):
            capabilities.append("🌐 Web Search with Domain Filtering")
        if model_info.get("supports_browser_search"):
            capabilities.append("πŸ” Browser Search Tools")
        
        cap_text = " | ".join(capabilities) if capabilities else "πŸ’¬ Chat Only"
        return f"βœ… Model updated to: **{model}**\n**Capabilities:** {cap_text}\n**API:** {model_info.get('api', 'unknown')}"
    else:
        return "⚠️ Please set your API keys first"

def get_search_options(model: str) -> gr.update:
    """Get available search options based on model"""
    if not ai_instance:
        return gr.update(choices=["none"], value="none")
    
    model = str(model) if model else "compound-beta"
    model_info = ai_instance.available_models.get(model, {})
    options = ["none"]
    
    if model_info.get("supports_web_search"):
        options.extend(["web_search", "auto"])
    if model_info.get("supports_browser_search"):
        options.extend(["browser_search", "auto"])
    
    options = list(dict.fromkeys(options))
    default_value = "auto" if "auto" in options else "none"
    return gr.update(choices=options, value=default_value)

async def chat_with_ai(message: str, 
                      include_domains: str, 
                      exclude_domains: str,
                      system_prompt: str,
                      temperature: float,
                      max_tokens: int,
                      search_type: str,
                      force_search: bool,
                      history: List) -> tuple:
    """Main chat function"""
    global ai_instance
    
    if not ai_instance:
        error_msg = "⚠️ Please set your API keys first!"
        history.append([str(message) if message else "", error_msg])
        return history, ""
    
    # Convert all inputs to strings and handle None values
    message = str(message) if message else ""
    include_domains = str(include_domains) if include_domains else ""
    exclude_domains = str(exclude_domains) if exclude_domains else ""
    system_prompt = str(system_prompt) if system_prompt else ""
    search_type = str(search_type) if search_type else "auto"
    
    if not message.strip():
        return history, ""
    
    include_list = [d.strip() for d in include_domains.split(",") if d.strip()] if include_domains.strip() else []
    exclude_list = [d.strip() for d in exclude_domains.split(",") if d.strip()] if exclude_domains.strip() else []
    
    try:
        response = await ai_instance.chat(
            message=message,
            include_domains=include_list if include_list else None,
            exclude_domains=exclude_list if exclude_list else None,
            system_prompt=system_prompt if system_prompt.strip() else None,
            temperature=temperature,
            max_tokens=int(max_tokens),
            search_type=search_type,
            force_search=force_search
        )
        
        ai_response = str(response.get("content", "No response received"))
        
        # Add tool usage info for Groq models
        if response.get("tool_usage") and ai_instance.model != "openai/gpt-oss-20b":
            tool_info = response["tool_usage"]
            tool_summary = []
            
            if tool_info.get("search_queries"):
                tool_summary.append(f"πŸ” Search queries: {len(tool_info['search_queries'])}")
            
            if tool_info.get("sources_found"):
                tool_summary.append(f"πŸ“„ Sources found: {len(tool_info['sources_found'])}")
            
            if tool_info.get("tools_used"):
                tool_types = [str(tool.get("tool_type", "unknown")) for tool in tool_info["tools_used"]]
                unique_types = list(set(tool_types))
                tool_summary.append(f"πŸ”§ Tools used: {', '.join(unique_types)}")
            
            if tool_summary:
                ai_response += f"\n\n*{' | '.join(tool_summary)}*"
        
        # Add search settings info
        search_info = []
        if response.get("search_type_used") and str(response["search_type_used"]) != "none":
            search_info.append(f"πŸ” Search type: {response['search_type_used']}")
        
        if force_search:
            search_info.append("⚑ Forced search enabled")
        
        if include_list or exclude_list:
            filter_info = []
            if include_list:
                filter_info.append(f"βœ… Included domains: {', '.join(include_list)}")
            if exclude_list:
                filter_info.append(f"❌ Excluded domains: {', '.join(exclude_list)}")
            search_info.extend(filter_info)
        
        if search_info and ai_instance.model != "openai/gpt-oss-20b":
            ai_response += f"\n\n*🌐 Search settings: {' | '.join(search_info)}*"
        
        history.append([message, ai_response])
        
        return history, ""
        
    except Exception as e:
        error_msg = f"❌ Error: {str(e)}"
        history.append([message, error_msg])
        return history, ""

def clear_chat_history():
    """Clear the chat history"""
    global ai_instance
    if ai_instance:
        ai_instance.clear_history()
    return []

def create_gradio_app():
    """Create the main Gradio application"""
    
    css = """
    .container {
        max-width: 1200px;
        margin: 0 auto;
    }
    .header {
        text-align: center;
        background: linear-gradient(to right, #00ff94, #00b4db);
        color: white;
        padding: 20px;
        border-radius: 10px;
        margin-bottom: 20px;
    }
    .status-box {
        background-color: #f8f9fa;
        border: 1px solid #dee2e6;
        border-radius: 8px;
        padding: 15px;
        margin: 10px 0;
    }
    .example-box {
        background-color: #e8f4fd;
        border-left: 4px solid #007bff;
        padding: 15px;
        margin: 10px 0;
        border-radius: 0 8px 8px 0;
    }
    .domain-info {
        background-color: #fff3cd;
        border: 1px solid #ffeaa7;
        border-radius: 8px;
        padding: 15px;
        margin: 10px 0;
    }
    .citation-info {
        background-color: #d1ecf1;
        border: 1px solid #bee5eb;
        border-radius: 8px;
        padding: 15px;
        margin: 10px 0;
    }
    .search-info {
        background-color: #e2e3e5;
        border: 1px solid #c6c8ca;
        border-radius: 8px;
        padding: 15px;
        margin: 10px 0;
    }
    #neuroscope-accordion {
        background: linear-gradient(to right, #00ff94, #00b4db); 
        border-radius: 8px;
    }
    """
    
    with gr.Blocks(css=css, title="πŸ€– Creative Agentic AI Chat", theme=gr.themes.Ocean()) as app:
        gr.HTML("""
        <div class="header">
            <h1>πŸ€– NeuroScope-AI Enhanced</h1>
            <p>Powered by Groq and Chutes Models with Web Search and Agentic Capabilities</p>
        </div>
        """)

        with gr.Group():
            with gr.Accordion("πŸ€– NeuroScope AI Enhanced", open=False, elem_id="neuroscope-accordion"):
                gr.Markdown("""
                    **Enhanced with Multiple Search Capabilities:**
                    - 🧠 **Intelligence** (Neuro): Advanced AI reasoning across multiple models
                    - πŸ” **Precision Search** (Scope): Domain filtering (Groq models)
                    - πŸ€– **AI Capabilities** (AI): Agentic behavior with tool usage
                    - ⚑ **Dual APIs**: Web search (Groq) + Streaming chat (Chutes)
                    - 🎯 **Model Flexibility**: Choose the right model for your task
                """)
                
        with gr.Group():
            with gr.Accordion("πŸ” IMPORTANT - Enhanced Search Capabilities!", open=True, elem_id="neuroscope-accordion"):
                gr.Markdown("""
                <div class="search-info">
                <h3>πŸš€ NEW: Multiple Search Types Available!</h3>
                
                <h4>🌐 Web Search Models (Groq API)</h4>
                <ul>
                    <li><strong>compound-beta:</strong> Most powerful with domain filtering</li>
                    <li><strong>compound-beta-mini:</strong> Faster with domain filtering</li>
                    <li><strong>Features:</strong> Include/exclude domains, autonomous web search</li>
                </ul>
                
                <h4>πŸ’¬ Chat Model (Chutes API)</h4>
                <ul>
                    <li><strong>openai/gpt-oss-20b:</strong> Fast conversational capabilities with streaming</li>
                    <li><strong>Features:</strong> General chat, streaming responses, no web search</li>
                </ul>
                </div>
                
                <div class="citation-info">
                <h3>πŸ”— Enhanced Citation System</h3>
                <p>Groq models include:</p>
                <ul>
                    <li><strong>Automatic Source Citations:</strong> Clickable links to sources</li>
                    <li><strong>Sources Used Section:</strong> Dedicated section showing all websites</li>
                    <li><strong>Search Type Indication:</strong> Shows which search method was used</li>
                </ul>
                <p><strong>Chutes models:</strong> Direct conversational responses without web search</p>
                </div>
                """)
        
        with gr.Row():
            with gr.Column(scale=2):
                groq_api_key = gr.Textbox(
                    label="πŸ”‘ Groq API Key",
                    placeholder="Enter your Groq API key here...",
                    type="password",
                    info="Get your API key from: https://console.groq.com/"
                )
                chutes_api_key = gr.Textbox(
                    label="πŸ”‘ Chutes API Key",
                    placeholder="Enter your Chutes API key here...",
                    type="password",
                    info="Required for openai/gpt-oss-20b model"
                )
            with gr.Column(scale=2):
                model_selection = gr.Radio(
                    choices=[
                        "compound-beta",
                        "compound-beta-mini", 
                        "openai/gpt-oss-20b"
                    ],
                    label="🧠 Model Selection",
                    value="compound-beta",
                    info="Choose based on your needs"
                )
            with gr.Column(scale=1):
                connect_btn = gr.Button("πŸ”— Connect", variant="primary", size="lg")
        
        status_display = gr.Markdown("### πŸ“Š Status: Not connected", elem_classes=["status-box"])
        
        connect_btn.click(
            fn=validate_api_keys,
            inputs=[groq_api_key, chutes_api_key, model_selection],
            outputs=[status_display]
        )
        
        model_selection.change(
            fn=update_model,
            inputs=[model_selection],
            outputs=[status_display]
        )
        
        with gr.Tab("πŸ’¬ Chat"):
            chatbot = gr.Chatbot(
                label="Creative AI Assistant with Enhanced Search",
                height=500,
                show_label=True,
                bubble_full_width=False,
                show_copy_button=True
            )
            
            with gr.Row():
                msg = gr.Textbox(
                    label="Your Message",
                    placeholder="Type your message here...",
                    lines=3
                )
                with gr.Column():
                    send_btn = gr.Button("πŸ“€ Send", variant="primary")
                    clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
            
        with gr.Accordion("πŸ” Search Settings", open=False, elem_id="neuroscope-accordion"):
            with gr.Row():
                search_type = gr.Radio(
                    choices=["auto", "web_search", "none"],
                    label="🎯 Search Type",
                    value="auto",
                    info="Choose search method (auto = model decides)"
                )
                force_search = gr.Checkbox(
                    label="⚑ Force Search",
                    value=False,
                    info="Force AI to search even for general questions (Groq models only)"
                )
            
            model_selection.change(
                fn=get_search_options,
                inputs=[model_selection],
                outputs=[search_type]
            )
            
        with gr.Accordion("🌐 Domain Filtering (Web Search Models Only)", open=False, elem_id="neuroscope-accordion"):
            gr.Markdown("""
            <div class="domain-info">
            <h4>πŸ” Domain Filtering Guide</h4>
            <p><strong>Note:</strong> Domain filtering only works with compound models (compound-beta, compound-beta-mini)</p>
            <ul>
                <li><strong>Include Domains:</strong> Only search these domains (comma-separated)</li>
                <li><strong>Exclude Domains:</strong> Never search these domains (comma-separated)</li>
                <li><strong>Examples:</strong> arxiv.org, *.edu, github.com, stackoverflow.com</li>
                <li><strong>Wildcards:</strong> Use *.edu for all educational domains</li>
            </ul>
            </div>
            """)
            
            with gr.Row():
                include_domains = gr.Textbox(
                    label="βœ… Include Domains (comma-separated)",
                    placeholder="arxiv.org, *.edu, github.com, stackoverflow.com",
                    info="Only search these domains (compound models only)"
                )
                exclude_domains = gr.Textbox(
                    label="❌ Exclude Domains (comma-separated)", 
                    placeholder="wikipedia.org, reddit.com, twitter.com",
                    info="Never search these domains (compound models only)"
                )
        
        with gr.Accordion("βš™οΈ Advanced Settings", open=False, elem_id="neuroscope-accordion"):
            with gr.Row():
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=0.7,
                    step=0.1,
                    label="🌑️ Temperature",
                    info="Higher = more creative, Lower = more focused"
                )
                max_tokens = gr.Slider(
                    minimum=100,
                    maximum=4000,
                    value=1024,
                    step=100,
                    label="πŸ“ Max Tokens",
                    info="Maximum length of response"
                )
                
            system_prompt = gr.Textbox(
                label="🎭 Custom System Prompt",
                placeholder="Override the default system prompt...",
                lines=3,
                info="Leave empty to use default creative assistant prompt with enhanced citations"
            )
        
        with gr.Accordion("πŸ“Š Model Comparison Guide", open=False, elem_id="neuroscope-accordion"):
            gr.Markdown("""
            ### πŸ” Choose Your Model Based on Task:
            
            **For Academic Research & Domain-Specific Search:**
            - `compound-beta` or `compound-beta-mini` with include domains (*.edu, arxiv.org)
            - Best for: Research papers, academic sources, filtered searches
            - API: Groq
            
            **For General Knowledge & Creative Tasks:**
            - `openai/gpt-oss-20b` for fast conversational responses
            - Best for: Creative writing, general questions
            - API: Chutes
            
            **For Programming & Technical Documentation:**
            - `compound-beta` with tech domains
            - Best for: Code help, documentation, technical guides
            - API: Groq
            """)
        
        with gr.Accordion("πŸ”— Common Domain Examples", open=False, elem_id="neuroscope-accordion"):
            gr.Markdown("""
            **Academic & Research:**
            - `arxiv.org`, `*.edu`, `scholar.google.com`, `researchgate.net`, `pubmed.ncbi.nlm.nih.gov`
            
            **Technology & Programming:**
            - `github.com`, `stackoverflow.com`, `docs.python.org`, `developer.mozilla.org`, `medium.com`
            
            **News & Media:**
            - `reuters.com`, `bbc.com`, `npr.org`, `apnews.com`, `cnn.com`, `nytimes.com`
            
            **Business & Finance:**
            - `bloomberg.com`, `wsj.com`, `nasdaq.com`, `sec.gov`, `investopedia.com`
            
            **Science & Medicine:**
            - `nature.com`, `science.org`, `pubmed.ncbi.nlm.nih.gov`, `who.int`, `cdc.gov`
            
            **Government & Official:**
            - `*.gov`, `*.org`, `un.org`, `worldbank.org`, `imf.org`
            """)
        
        with gr.Accordion("πŸ“– How to Use This Enhanced App", open=False, elem_id="neuroscope-accordion"):
            gr.Markdown("""
            ### πŸš€ Getting Started
            1. **Enter your API Keys** - Groq from [console.groq.com](https://console.groq.com/), Chutes for openai/gpt-oss-20b
            2. **Select a model** - Choose based on your needs:
               - **Compound models** (Groq): For web search with domain filtering
               - **openai/gpt-oss-20b** (Chutes): For general conversational tasks
            3. **Configure search settings** - Choose search type and options (Groq models only)
            4. **Click Connect** - Validate your keys and connect to the AI
            5. **Start chatting!** - Type your message and get intelligent responses with citations
            
            ### 🎯 Key Features
            - **Dual APIs**: Web search (Groq) + Basic chat (Chutes)
            - **Smart Citations**: Automatic source linking and citation formatting (Groq models)
            - **Domain Filtering**: Control which websites the AI searches (Groq models)
            - **Model Flexibility**: Choose the right model and API for your task
            - **Enhanced Tool Visibility**: See search tools used (Groq models)
            
            ### πŸ’‘ Tips for Best Results
            
            **For Research Tasks:**
            - Use compound models with domain filtering
            - Include academic domains (*.edu, arxiv.org) for scholarly sources
            - Use "Force Search" for the most current information
            
            **For Creative Tasks:**
            - Use openai/gpt-oss-20b (Chutes) or any model
            - Set search type to "none" for purely creative responses
            - Use higher temperature (0.8-1.0) for more creativity
            """)
        
        with gr.Accordion("🎯 Sample Examples to Test Enhanced Search", open=False, elem_id="neuroscope-accordion"):
            gr.Markdown("""
            <div class="example-box">
            <h4>πŸ”¬ Research & Analysis</h4>
            
            **Compound Model + Domain Filtering (Groq):**
            - Query: "What are the latest breakthroughs in quantum computing?"
            - Model: compound-beta
            - Include domains: "arxiv.org, *.edu, nature.com"
            - Search type: web_search
            
            <h4>πŸ’¬ General Knowledge (Chutes):**
            - Query: "Tell me about quantum computing"
            - Model: openai/gpt-oss-20b
            - Search type: none
            
            <h4>πŸ’» Programming & Tech</h4>
            
            **Technical Documentation (Groq):**
            - Query: "How to implement OAuth 2.0 in Python Flask?"
            - Model: compound-beta
            - Include domains: "github.com, docs.python.org, stackoverflow.com"
            - Search type: web_search
            
            **Code Help (Chutes):**
            - Same query with openai/gpt-oss-20b
            - Search type: none
            
            <h4>🎨 Creative Tasks</h4>
            - Query: "Write a short story about AI and humans working together"
            - Any model with search_type: "none"
            - Higher temperature (0.8-1.0)
            
            <h4>πŸ“Š Business Analysis</h4>
            
            **Business Analysis (Filtered, Groq):**
            - Query: "Cryptocurrency adoption in enterprise"
            - Model: compound-beta
            - Include domains: "bloomberg.com, wsj.com, harvard.edu"
            - Search type: web_search
            </div>
            """)
        
        send_btn.click(
            fn=chat_with_ai,
            inputs=[msg, include_domains, exclude_domains, system_prompt, temperature, max_tokens, search_type, force_search, chatbot],
            outputs=[chatbot, msg]
        )
        
        msg.submit(
            fn=chat_with_ai,
            inputs=[msg, include_domains, exclude_domains, system_prompt, temperature, max_tokens, search_type, force_search, chatbot],
            outputs=[chatbot, msg]
        )
        
        clear_btn.click(
            fn=clear_chat_history,
            outputs=[chatbot]
        )
        
        with gr.Accordion("πŸš€ About This Enhanced NeuroScope AI", open=True, elem_id="neuroscope-accordion"):
            gr.Markdown("""
            **Enhanced Creative Agentic AI Chat Tool** with dual API support:
            
            ### πŸ†• **New in This Version:**
            - πŸ’¬ **Chutes API Integration**: For openai/gpt-oss-20b model
            - 🌐 **Dual API System**: Web search (Groq) + Basic chat (Chutes)
            - 🎯 **Model Flexibility**: Multiple models across two APIs
            - ⚑ **Force Search Option**: Make AI search for Groq models  
            - πŸ”§ **Enhanced Tool Visibility**: See search tools used (Groq models)
            - πŸ“Š **Model Comparison Guide**: Choose the right model and API
            
            ### πŸ† **Core Features:**
            - πŸ”— **Automatic Source Citations**: Clickable links to sources (Groq models)
            - πŸ“š **Sources Used Section**: Dedicated section for websites (Groq models)
            - 🌐 **Smart Domain Filtering**: Control search scope (Groq models)
            - πŸ’¬ **Conversational Memory**: Maintains context throughout the session
            - βš™οΈ **Full Customization**: Adjust all parameters and prompts
            - 🎨 **Creative & Analytical**: Optimized for both creative and research tasks
            
            ### πŸ› οΈ **Technical Details:**
            - **Compound Models (Groq)**: compound-beta, compound-beta-mini (web search + domain filtering)
            - **Chat Model (Chutes)**: openai/gpt-oss-20b (basic conversational capabilities)
            - **Automatic Search Type Detection**: AI chooses best search method (Groq models)
            - **Enhanced Error Handling**: Robust error management and user feedback
            - **Real-time Status Updates**: Live feedback on model capabilities and search settings
            """)
    
    return app

# Main execution
if __name__ == "__main__":
    app = create_gradio_app()
    app.launch(
        share=True
    )