shukdevdattaEX's picture
Update app.py
3dd01fd verified
raw
history blame
57.3 kB
import os
import json
import time
import gradio as gr
from datetime import datetime
from typing import List, Dict, Any, Optional, Union
import threading
import re
import aiohttp
import asyncio
# Import Groq
from groq import Groq
class CreativeAgenticAI:
"""
Creative Agentic AI Chat Tool using multiple providers (Groq and Chutes)
"""
def __init__(self, groq_api_key: str = None, chutes_api_key: str = None, provider: str = "groq", model: str = None):
"""
Initialize the Creative Agentic AI system.
Args:
groq_api_key: Groq API key
chutes_api_key: Chutes API key
provider: Which provider to use ('groq' or 'chutes')
model: Which model to use
"""
self.groq_api_key = groq_api_key
self.chutes_api_key = chutes_api_key
self.provider = provider
self.conversation_history = []
# Initialize clients based on provider
if provider == "groq" and groq_api_key:
if not groq_api_key:
raise ValueError("No Groq API key provided")
self.groq_client = Groq(api_key=groq_api_key)
self.model = model or "compound-beta"
elif provider == "chutes" and chutes_api_key:
if not chutes_api_key:
raise ValueError("No Chutes API key provided")
self.model = model or "openai/gpt-oss-20b"
else:
raise ValueError(f"Invalid provider or missing API key for {provider}")
async def _chutes_chat_async(self, messages: List[Dict], temperature: float = 0.7, max_tokens: int = 1024, stream: bool = False) -> Dict:
"""
Async method for Chutes API chat with thinking support
"""
headers = {
"Authorization": f"Bearer {self.chutes_api_key}",
"Content-Type": "application/json"
}
body = {
"model": self.model,
"messages": messages,
"stream": stream,
"max_tokens": max_tokens,
"temperature": temperature
}
async with aiohttp.ClientSession() as session:
async with session.post(
"https://llm.chutes.ai/v1/chat/completions",
headers=headers,
json=body
) as response:
if response.status == 200:
if stream:
thinking_content = ""
final_content = ""
in_thinking = False
async for line in response.content:
line = line.decode("utf-8").strip()
if line.startswith("data: "):
data = line[6:]
if data == "[DONE]":
break
try:
chunk_data = json.loads(data)
if 'choices' in chunk_data and len(chunk_data['choices']) > 0:
delta = chunk_data['choices'][0].get('delta', {})
content = delta.get('content', '')
if content:
# Check for thinking tags
if '<thinking>' in content:
in_thinking = True
thinking_content += content.replace('<thinking>', '')
elif '</thinking>' in content:
thinking_content += content.replace('</thinking>', '')
in_thinking = False
elif in_thinking:
thinking_content += content
else:
final_content += content
except json.JSONDecodeError:
continue
return {
"thinking": thinking_content.strip(),
"content": final_content.strip()
}
else:
result = await response.json()
full_content = result['choices'][0]['message']['content']
# Extract thinking and final content from non-streaming response
thinking_content = ""
final_content = full_content
if '<thinking>' in full_content and '</thinking>' in full_content:
start_idx = full_content.find('<thinking>') + len('<thinking>')
end_idx = full_content.find('</thinking>')
thinking_content = full_content[start_idx:end_idx].strip()
final_content = full_content[end_idx + len('</thinking>'):].strip()
return {
"thinking": thinking_content,
"content": final_content
}
else:
error_text = await response.text()
raise Exception(f"Chutes API error: {response.status} - {error_text}")
def _chutes_chat_sync(self, messages: List[Dict], temperature: float = 0.7, max_tokens: int = 1024, stream: bool = True) -> Dict:
"""
Synchronous wrapper for Chutes API chat
"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(
self._chutes_chat_async(messages, temperature, max_tokens, stream)
)
def chat(self, message: str,
include_domains: List[str] = None,
exclude_domains: List[str] = None,
system_prompt: str = None,
temperature: float = 0.7,
max_tokens: int = 1024) -> Dict:
"""
Send a message to the AI and get a response
Args:
message: User's message
include_domains: List of domains to include for web search (Groq only)
exclude_domains: List of domains to exclude from web search (Groq only)
system_prompt: Custom system prompt
temperature: Model temperature (0.0-2.0)
max_tokens: Maximum tokens in response
Returns:
AI response with metadata
"""
# Enhanced system prompt for better citation behavior
if not system_prompt:
if self.provider == "groq":
citation_instruction = """
IMPORTANT: When you search the web and find information, you MUST:
1. Always cite your sources with clickable links in this format: [Source Title](URL)
2. Include multiple diverse sources when possible
3. Show which specific websites you used for each claim
4. At the end of your response, provide a "Sources Used" section with all the links
5. Be transparent about which information comes from which source
"""
domain_context = ""
if include_domains:
domain_context = f"\nYou are restricted to searching ONLY these domains: {', '.join(include_domains)}. Make sure to find and cite sources specifically from these domains."
elif exclude_domains:
domain_context = f"\nAvoid searching these domains: {', '.join(exclude_domains)}. Search everywhere else on the web."
system_prompt = f"""You are a creative and intelligent AI assistant with agentic capabilities.
You can search the web, analyze information, and provide comprehensive responses.
Be helpful, creative, and engaging while maintaining accuracy.
{citation_instruction}
{domain_context}
Your responses should be well-structured, informative, and properly cited with working links."""
else:
# System prompt for Chutes thinking models
system_prompt = """You are a creative and intelligent AI assistant with advanced reasoning capabilities.
Think through problems step-by-step, showing your reasoning process clearly.
Be helpful, creative, and engaging while maintaining accuracy.
Your responses should be well-structured, informative, and comprehensive.
When solving complex problems, break them down into steps and explain your thinking process."""
# Build messages
messages = [{"role": "system", "content": system_prompt}]
# Add conversation history (last 10 exchanges)
messages.extend(self.conversation_history[-20:]) # Last 10 user-assistant pairs
# Add current message with domain filtering context (Groq only)
enhanced_message = message
if self.provider == "groq" and (include_domains or exclude_domains):
filter_context = []
if include_domains:
filter_context.append(f"ONLY search these domains: {', '.join(include_domains)}")
if exclude_domains:
filter_context.append(f"EXCLUDE these domains: {', '.join(exclude_domains)}")
enhanced_message += f"\n\n[Domain Filtering: {' | '.join(filter_context)}]"
messages.append({"role": "user", "content": enhanced_message})
try:
if self.provider == "groq":
return self._handle_groq_chat(messages, include_domains, exclude_domains, temperature, max_tokens, message)
elif self.provider == "chutes":
return self._handle_chutes_chat(messages, temperature, max_tokens, message)
else:
raise ValueError(f"Unknown provider: {self.provider}")
except Exception as e:
error_msg = f"Error: {str(e)}"
self.conversation_history.append({"role": "user", "content": message})
self.conversation_history.append({"role": "assistant", "content": error_msg})
return {
"content": error_msg,
"thinking": "",
"timestamp": datetime.now().isoformat(),
"model": self.model,
"provider": self.provider,
"tool_usage": None,
"error": str(e)
}
def _handle_groq_chat(self, messages: List[Dict], include_domains: List[str], exclude_domains: List[str],
temperature: float, max_tokens: int, original_message: str) -> Dict:
"""Handle Groq API chat"""
# Set up API parameters
params = {
"messages": messages,
"model": self.model,
"temperature": temperature,
"max_tokens": max_tokens
}
# Add domain filtering if specified
if include_domains and include_domains[0].strip():
params["include_domains"] = [domain.strip() for domain in include_domains if domain.strip()]
if exclude_domains and exclude_domains[0].strip():
params["exclude_domains"] = [domain.strip() for domain in exclude_domains if domain.strip()]
# Make the API call
response = self.groq_client.chat.completions.create(**params)
content = response.choices[0].message.content
# Extract tool usage information and enhance it
tool_info = self._extract_tool_info(response)
# Process content to enhance citations
processed_content = self._enhance_citations(content, tool_info)
# Add to conversation history
self.conversation_history.append({"role": "user", "content": original_message})
self.conversation_history.append({"role": "assistant", "content": processed_content})
# Create response object
return {
"content": processed_content,
"thinking": "", # Groq doesn't have thinking process
"timestamp": datetime.now().isoformat(),
"model": self.model,
"provider": "groq",
"tool_usage": tool_info,
"parameters": {
"temperature": temperature,
"max_tokens": max_tokens,
"include_domains": include_domains,
"exclude_domains": exclude_domains
}
}
def _handle_chutes_chat(self, messages: List[Dict], temperature: float, max_tokens: int, original_message: str) -> Dict:
"""Handle Chutes API chat with thinking support"""
result = self._chutes_chat_sync(messages, temperature, max_tokens, stream=True)
thinking_content = result.get("thinking", "")
final_content = result.get("content", "")
# Add to conversation history (only store final content)
self.conversation_history.append({"role": "user", "content": original_message})
self.conversation_history.append({"role": "assistant", "content": final_content})
# Create response object
return {
"content": final_content,
"thinking": thinking_content,
"timestamp": datetime.now().isoformat(),
"model": self.model,
"provider": "chutes",
"tool_usage": None, # Chutes doesn't have tool usage info
"parameters": {
"temperature": temperature,
"max_tokens": max_tokens
}
}
def _extract_tool_info(self, response) -> Dict:
"""Extract tool usage information in a JSON serializable format (Groq only)"""
tool_info = {
"tools_used": [],
"search_queries": [],
"sources_found": []
}
if hasattr(response.choices[0].message, 'executed_tools'):
tools = response.choices[0].message.executed_tools
if tools:
for tool in tools:
tool_dict = {
"tool_type": getattr(tool, "type", "unknown"),
"tool_name": getattr(tool, "name", "unknown"),
}
# Extract search queries and results
if hasattr(tool, "input"):
tool_input = str(tool.input)
tool_dict["input"] = tool_input
# Try to extract search query
if "search" in tool_dict["tool_name"].lower():
tool_info["search_queries"].append(tool_input)
if hasattr(tool, "output"):
tool_output = str(tool.output)
tool_dict["output"] = tool_output
# Try to extract URLs from output
urls = self._extract_urls(tool_output)
tool_info["sources_found"].extend(urls)
tool_info["tools_used"].append(tool_dict)
return tool_info
def _extract_urls(self, text: str) -> List[str]:
"""Extract URLs from text"""
url_pattern = r'https?://[^\s<>"]{2,}'
urls = re.findall(url_pattern, text)
return list(set(urls)) # Remove duplicates
def _enhance_citations(self, content: str, tool_info: Dict) -> str:
"""Enhance content with better citation formatting (Groq only)"""
if not tool_info or not tool_info.get("sources_found"):
return content
# Add sources section if not already present
if "Sources Used:" not in content and "sources:" not in content.lower():
sources_section = "\n\n---\n\n### πŸ“š Sources Used:\n"
for i, url in enumerate(tool_info["sources_found"][:10], 1): # Limit to 10 sources
# Try to extract domain name for better formatting
domain = self._extract_domain(url)
sources_section += f"{i}. [{domain}]({url})\n"
content += sources_section
return content
def _extract_domain(self, url: str) -> str:
"""Extract domain name from URL for display"""
try:
if url.startswith(('http://', 'https://')):
domain = url.split('/')[2]
# Remove www. prefix if present
if domain.startswith('www.'):
domain = domain[4:]
return domain
return url
except:
return url
def clear_history(self):
"""Clear conversation history"""
self.conversation_history = []
def get_history_summary(self) -> str:
"""Get a summary of conversation history"""
if not self.conversation_history:
return "No conversation history"
user_messages = [msg for msg in self.conversation_history if msg["role"] == "user"]
assistant_messages = [msg for msg in self.conversation_history if msg["role"] == "assistant"]
return f"Conversation: {len(user_messages)} user messages, {len(assistant_messages)} assistant responses"
# Global variables
ai_instance = None
current_provider = "groq"
api_key_status = {"groq": "Not Set", "chutes": "Not Set"}
def validate_api_keys(groq_api_key: str, chutes_api_key: str, provider: str, model: str) -> str:
"""Validate API keys and initialize AI instance"""
global ai_instance, current_provider, api_key_status
current_provider = provider
if provider == "groq":
if not groq_api_key or len(groq_api_key.strip()) < 10:
api_key_status["groq"] = "Invalid ❌"
return "❌ Please enter a valid Groq API key (should be longer than 10 characters)"
try:
# Test the Groq API key
client = Groq(api_key=groq_api_key)
test_response = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model=model,
max_tokens=10
)
# Create AI instance
ai_instance = CreativeAgenticAI(groq_api_key=groq_api_key, provider="groq", model=model)
api_key_status["groq"] = "Valid βœ…"
return f"βœ… Groq API Key Valid! Creative Agentic AI is ready.\n\n**Provider:** Groq\n**Model:** {model}\n**Status:** Connected with web search capabilities!"
except Exception as e:
api_key_status["groq"] = "Invalid ❌"
ai_instance = None
return f"❌ Error validating Groq API key: {str(e)}\n\nPlease check your API key and try again."
elif provider == "chutes":
if not chutes_api_key or len(chutes_api_key.strip()) < 10:
api_key_status["chutes"] = "Invalid ❌"
return "❌ Please enter a valid Chutes API key (should be longer than 10 characters)"
try:
# Test the Chutes API key with a simple request
test_ai = CreativeAgenticAI(chutes_api_key=chutes_api_key, provider="chutes", model=model)
test_response = test_ai._chutes_chat_sync(
[{"role": "user", "content": "Hello"}],
temperature=0.7,
max_tokens=10,
stream=False # Use non-streaming for validation
)
# Create AI instance
ai_instance = CreativeAgenticAI(chutes_api_key=chutes_api_key, provider="chutes", model=model)
api_key_status["chutes"] = "Valid βœ…"
return f"βœ… Chutes API Key Valid! Creative AI with Thinking is ready.\n\n**Provider:** Chutes\n**Model:** {model}\n**Status:** Connected with thinking model capabilities!"
except Exception as e:
api_key_status["chutes"] = "Invalid ❌"
ai_instance = None
return f"❌ Error validating Chutes API key: {str(e)}\n\nPlease check your API key and try again."
def get_available_models(provider: str) -> List[str]:
"""Get available models for the selected provider"""
if provider == "groq":
return ["compound-beta", "compound-beta-mini"]
elif provider == "chutes":
return ["openai/gpt-oss-20b", "zai-org/GLM-4.5-Air", "Qwen/Qwen3-8B"]
return []
def update_model_choices(provider: str):
"""Update model choices based on provider selection"""
models = get_available_models(provider)
return gr.Radio(choices=models, value=models[0] if models else None, label=f"🧠 {provider.title()} Models")
def chat_with_ai(message: str,
include_domains: str,
exclude_domains: str,
system_prompt: str,
temperature: float,
max_tokens: int,
history: List,
show_thinking: bool = True) -> tuple:
"""Main chat function with thinking support"""
global ai_instance, current_provider
if not ai_instance:
error_msg = f"⚠️ Please set your {current_provider.title()} API key first!"
history.append([message, error_msg])
return history, ""
if not message.strip():
return history, ""
# Process domain lists (only for Groq)
include_list = None
exclude_list = None
if current_provider == "groq":
include_list = [d.strip() for d in include_domains.split(",")] if include_domains.strip() else []
exclude_list = [d.strip() for d in exclude_domains.split(",")] if exclude_domains.strip() else []
try:
# Get AI response
response = ai_instance.chat(
message=message,
include_domains=include_list if include_list else None,
exclude_domains=exclude_list if exclude_list else None,
system_prompt=system_prompt if system_prompt.strip() else None,
temperature=temperature,
max_tokens=int(max_tokens)
)
# Format response with thinking (if available and enabled)
ai_response = ""
# Add thinking section for Chutes models
if current_provider == "chutes" and response.get("thinking") and show_thinking:
thinking_content = response["thinking"].strip()
if thinking_content:
ai_response += f"### πŸ€” **Model's Thinking Process:**\n\n"
ai_response += f"*The model is reasoning through your question...*\n\n"
ai_response += f"```thinking\n{thinking_content}\n```\n\n"
ai_response += "---\n\n### πŸ’‘ **Final Response:**\n\n"
# Add main content
ai_response += response["content"]
# Add enhanced tool usage info (Groq only)
if response.get("tool_usage") and current_provider == "groq":
tool_info = response["tool_usage"]
tool_summary = []
if tool_info.get("search_queries"):
tool_summary.append(f"πŸ” Search queries: {len(tool_info['search_queries'])}")
if tool_info.get("sources_found"):
tool_summary.append(f"πŸ“„ Sources found: {len(tool_info['sources_found'])}")
if tool_info.get("tools_used"):
tool_summary.append(f"πŸ”§ Tools used: {len(tool_info['tools_used'])}")
if tool_summary:
ai_response += f"\n\n*{' | '.join(tool_summary)}*"
# Add domain filtering info (Groq only)
if current_provider == "groq" and (include_list or exclude_list):
filter_info = []
if include_list:
filter_info.append(f"βœ… Included domains: {', '.join(include_list)}")
if exclude_list:
filter_info.append(f"❌ Excluded domains: {', '.join(exclude_list)}")
ai_response += f"\n\n*🌐 Domain filtering applied: {' | '.join(filter_info)}*"
# Add provider and thinking info
provider_info = f"πŸ€– Powered by: {current_provider.title()} ({response.get('model', 'unknown')})"
if current_provider == "chutes" and response.get("thinking"):
if show_thinking:
provider_info += " | πŸ€” Thinking process shown"
else:
provider_info += " | πŸ€” Thinking process hidden"
ai_response += f"\n\n*{provider_info}*"
# Add to history
history.append([message, ai_response])
return history, ""
except Exception as e:
error_msg = f"❌ Error: {str(e)}"
history.append([message, error_msg])
return history, ""
def clear_chat_history():
"""Clear the chat history"""
global ai_instance
if ai_instance:
ai_instance.clear_history()
return []
def create_gradio_app():
"""Create the main Gradio application"""
# Custom CSS for better styling
css = """
.container {
max-width: 1200px;
margin: 0 auto;
}
.header {
text-align: center;
background: linear-gradient(to right, #00ff94, #00b4db);
color: white;
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
.status-box {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.example-box {
background-color: #e8f4fd;
border-left: 4px solid #007bff;
padding: 15px;
margin: 10px 0;
border-radius: 0 8px 8px 0;
}
.domain-info {
background-color: #fff3cd;
border: 1px solid #ffeaa7;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.citation-info {
background-color: #d1ecf1;
border: 1px solid #bee5eb;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.provider-info {
background-color: #f8d7da;
border: 1px solid #f5c6cb;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.thinking-info {
background-color: #e2e3e5;
border: 1px solid #d6d8db;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
#neuroscope-accordion {
background: linear-gradient(to right, #00ff94, #00b4db);
border-radius: 8px;
}
#neuroscope-accordion2 {
background: linear-gradient(to right, #00ff94, #00b4db);
border-radius: 8px;
margin-top: 10px;
}
"""
with gr.Blocks(css=css, title="πŸ€– Multi-Provider Creative Agentic AI Chat with Thinking", theme=gr.themes.Ocean()) as app:
# Header
gr.HTML("""
<div class="header">
<h1>πŸ€– NeuroScope-AI Enhanced with Thinking Models</h1>
<p>Multi-Provider AI Chat Tool - Groq's Compound Models & Chutes Thinking Models</p>
</div>
""")
# Provider Selection
with gr.Group():
with gr.Accordion("πŸ€– Multi-Provider NeuroScope AI with Thinking", open=False, elem_id="neuroscope-accordion"):
gr.Markdown("""
**Enhanced with Multiple AI Providers & Thinking Models:**
- 🧠 Intelligence (Neuro) - Now supports Groq & Chutes Thinking Models
- πŸ” Advanced capabilities (Scope) - Web search with Groq, reasoning traces with Chutes
- πŸ€– AI capabilities (AI) - Multiple model options including thinking models
- ⚑ Precision & Speed (Scope) - Choose the best provider for your needs
- πŸ€” **NEW**: Thinking process visualization for Chutes models
""")
# Thinking Models Info
with gr.Group():
with gr.Accordion("πŸ€” About Chutes Thinking Models", open=False, elem_id="neuroscope-accordion"):
gr.Markdown("""
<div class="thinking-info">
<h3>🧠 What are Thinking Models?</h3>
<p><strong>Chutes Thinking Models</strong> are advanced AI systems that show their reasoning process before providing the final answer.</p>
<h4>πŸ” How They Work:</h4>
<ul>
<li><strong>Step-by-Step Reasoning:</strong> Models think through problems systematically</li>
<li><strong>Transparent Process:</strong> You can see exactly how the AI reaches its conclusions</li>
<li><strong>Better Accuracy:</strong> The thinking process often leads to more accurate and well-reasoned responses</li>
<li><strong>Educational Value:</strong> Learn from the AI's problem-solving approach</li>
</ul>
<h4>🎯 Available Thinking Models:</h4>
<ul>
<li><strong>openai/gpt-oss-20b:</strong> Large-scale reasoning and analysis</li>
<li><strong>meta-llama/llama-3.1-8b-instruct:</strong> Efficient thinking and instruction following</li>
<li><strong>anthropic/claude-3-sonnet:</strong> Advanced reasoning and creative thinking</li>
</ul>
<h4>πŸ’‘ Best For:</h4>
<ul>
<li>Complex problem-solving tasks</li>
<li>Mathematical and logical reasoning</li>
<li>Step-by-step analysis</li>
<li>Educational explanations</li>
<li>Creative writing with detailed planning</li>
</ul>
</div>
""")
# Provider and API Key Section
with gr.Row():
with gr.Column():
provider_selection = gr.Radio(
choices=["groq", "chutes"],
label="🏒 AI Provider",
value="groq",
info="Choose your AI provider"
)
# API Key inputs
groq_api_key = gr.Textbox(
label="πŸ”‘ Groq API Key",
placeholder="Enter your Groq API key here...",
type="password",
info="Get your API key from: https://console.groq.com/",
visible=True
)
chutes_api_key = gr.Textbox(
label="πŸ”‘ Chutes API Key",
placeholder="Enter your Chutes API key here...",
type="password",
info="Get your API key from: https://chutes.ai/",
visible=False
)
model_selection = gr.Radio(
choices=get_available_models("groq"),
label="🧠 Groq Models",
value="compound-beta",
info="compound-beta: More powerful | compound-beta-mini: Faster"
)
# Thinking toggle for Chutes
show_thinking = gr.Checkbox(
label="πŸ€” Show Thinking Process",
value=True,
info="Display the model's reasoning process (Chutes only)",
visible=False
)
connect_btn = gr.Button("πŸ”— Connect", variant="primary", size="lg")
# Status display
status_display = gr.Markdown("### πŸ“Š Status: Not connected", elem_classes=["status-box"])
# Provider Information
with gr.Group():
with gr.Accordion("🏒 Provider Comparison", open=False, elem_id="neuroscope-accordion"):
gr.Markdown("""
<div class="provider-info">
<h3>πŸ†š Groq vs Chutes Comparison</h3>
**πŸš€ Groq (Compound Models)**
- βœ… **Web Search Capabilities** - Can search the internet and cite sources
- βœ… **Agentic Tools** - Advanced tool usage and autonomous web browsing
- βœ… **Domain Filtering** - Control which websites to search
- βœ… **Citation System** - Automatic source linking and references
- ⚑ **Ultra-fast inference** - Groq's hardware acceleration
- 🧠 **Models**: compound-beta, compound-beta-mini
- ❌ **No thinking process** - Direct responses without visible reasoning
**🎯 Chutes (Thinking Models)**
- βœ… **Multiple Model Access** - Various open-source and commercial models
- βœ… **Thinking Process** - See the model's step-by-step reasoning
- βœ… **High-quality reasoning** - Better accuracy through visible thinking
- βœ… **Educational Value** - Learn from AI's problem-solving approach
- ⚑ **Good performance** - Reliable and fast responses
- 🧠 **Models**: GPT-OSS-20B, Llama 3.1, Claude 3 Sonnet (all with thinking)
- ❌ **No web search** - Relies on training data only
**πŸ’‘ Use Groq when you need:**
- Real-time information and web search
- Research with source citations
- Domain-specific searches
- Ultra-fast responses
**πŸ’‘ Use Chutes when you need:**
- Complex problem-solving with visible reasoning
- Educational explanations
- Mathematical and logical analysis
- Creative planning with detailed thinking
- Understanding AI's reasoning process
</div>
""")
# Update UI based on provider selection
def update_provider_ui(provider):
groq_visible = provider == "groq"
chutes_visible = provider == "chutes"
models = get_available_models(provider)
return (
gr.update(visible=groq_visible), # groq_api_key
gr.update(visible=chutes_visible), # chutes_api_key
gr.update(choices=models, value=models[0] if models else None,
label=f"🧠 {provider.title()} Models"), # model_selection
gr.update(visible=chutes_visible), # show_thinking
gr.update(visible=groq_visible),
)
provider_selection.change(
fn=update_provider_ui,
inputs=[provider_selection],
outputs=[groq_api_key, chutes_api_key, model_selection, show_thinking]
)
# Connect button functionality
connect_btn.click(
fn=validate_api_keys,
inputs=[groq_api_key, chutes_api_key, provider_selection, model_selection],
outputs=[status_display]
)
# Main Chat Interface
with gr.Tab("πŸ’¬ Chat"):
chatbot = gr.Chatbot(
label="Multi-Provider Creative AI Assistant with Thinking",
height=600,
show_label=True,
bubble_full_width=False,
show_copy_button=True
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=3
)
with gr.Column():
send_btn = gr.Button("πŸ“€ Send", variant="primary")
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
# Advanced Settings
with gr.Accordion("βš™οΈ Advanced Settings", open=False, elem_id="neuroscope-accordion"):
with gr.Row():
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="🌑️ Temperature",
info="Higher = more creative, Lower = more focused"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1024,
step=100,
label="πŸ“ Max Tokens",
info="Maximum length of response"
)
system_prompt = gr.Textbox(
label="🎭 Custom System Prompt",
placeholder="Override the default system prompt...",
lines=2,
info="Leave empty to use provider-optimized default prompt"
)
# Domain Filtering Section (Groq only)
with gr.Group():
with gr.Accordion("🌐 Domain Filtering (Groq Web Search Only)", open=False, elem_id="neuroscope-accordion"):
gr.Markdown("""
<div class="domain-info">
<h4>πŸ” Domain Filtering Guide (Groq Only)</h4>
<p><strong>Note:</strong> Domain filtering only works with Groq's compound models that have web search capabilities.</p>
<p>Control which websites the AI can search when answering your questions:</p>
<ul>
<li><strong>Include Domains:</strong> Only search these domains (comma-separated)</li>
<li><strong>Exclude Domains:</strong> Never search these domains (comma-separated)</li>
<li><strong>Examples:</strong> arxiv.org, *.edu, github.com, stackoverflow.com</li>
<li><strong>Wildcards:</strong> Use *.edu for all educational domains</li>
</ul>
<p><strong>New:</strong> Domain filtering status will be shown in responses!</p>
</div>
""")
with gr.Row():
include_domains = gr.Textbox(
label="βœ… Include Domains (comma-separated)",
placeholder="arxiv.org, *.edu, github.com, stackoverflow.com",
info="Only search these domains"
)
exclude_domains = gr.Textbox(
label="❌ Exclude Domains (comma-separated)",
placeholder="wikipedia.org, reddit.com, twitter.com",
info="Never search these domains"
)
with gr.Accordion("πŸ”— Common Domain Examples", open=False, elem_id="neuroscope-accordion2"):
gr.Markdown("""
**Academic & Research:**
- `arxiv.org`, `*.edu`, `scholar.google.com`, `researchgate.net`
**Technology & Programming:**
- `github.com`, `stackoverflow.com`, `docs.python.org`, `developer.mozilla.org`
**News & Media:**
- `reuters.com`, `bbc.com`, `npr.org`, `apnews.com`
**Business & Finance:**
- `bloomberg.com`, `wsj.com`, `nasdaq.com`, `sec.gov`
**Science & Medicine:**
- `nature.com`, `science.org`, `pubmed.ncbi.nlm.nih.gov`, `who.int`
""")
# Update provider UI function with domain filtering and thinking toggle
def update_provider_ui_complete(provider):
groq_visible = provider == "groq"
chutes_visible = provider == "chutes"
models = get_available_models(provider)
return (
gr.update(visible=groq_visible), # groq_api_key
gr.update(visible=chutes_visible), # chutes_api_key
gr.update(choices=models, value=models[0] if models else None,
label=f"🧠 {provider.title()} Models"), # model_selection
gr.update(visible=chutes_visible), # show_thinking
gr.update(visible=groq_visible),
)
provider_selection.change(
fn=update_provider_ui_complete,
inputs=[provider_selection],
outputs=[groq_api_key, chutes_api_key, model_selection, show_thinking]
)
# IMPORTANT Section with Citation Info and Thinking
with gr.Group():
with gr.Accordion("πŸ“š IMPORTANT - Citations & Thinking Models!", open=False, elem_id="neuroscope-accordion"):
gr.Markdown("""
<div class="citation-info">
<h3>πŸ†• Multi-Provider Enhancement with Thinking Models</h3>
<p>This enhanced version now supports both Groq and Chutes AI providers:</p>
<ul>
<li><strong>πŸš€ Groq Integration:</strong> Agentic AI with web search, citations, and tool usage</li>
<li><strong>🎯 Chutes Integration:</strong> Multiple thinking models with visible reasoning processes</li>
<li><strong>πŸ€” Thinking Process:</strong> See step-by-step reasoning from Chutes models</li>
<li><strong>πŸ”„ Easy Switching:</strong> Switch between providers based on your needs</li>
<li><strong>πŸ“Š Provider Comparison:</strong> Clear information about each provider's strengths</li>
</ul>
<h3>πŸ”— Groq Enhanced Citation System</h3>
<p>When using Groq, you get:</p>
<ul>
<li><strong>Automatic Source Citations:</strong> All responses include clickable links to sources</li>
<li><strong>Sources Used Section:</strong> Dedicated section showing all websites referenced</li>
<li><strong>Domain Filtering Verification:</strong> Clear indication when domain filtering is applied</li>
<li><strong>Search Query Tracking:</strong> Shows what queries were made to find information</li>
</ul>
<h3>πŸ€” Chutes Thinking Model Features</h3>
<p>When using Chutes, you get access to:</p>
<ul>
<li><strong>Thinking Process Visualization:</strong> See exactly how the AI reasons through problems</li>
<li><strong>Step-by-Step Analysis:</strong> Watch the model break down complex questions</li>
<li><strong>Toggle Thinking Display:</strong> Choose to show or hide the reasoning process</li>
<li><strong>Educational Value:</strong> Learn from AI's problem-solving approaches</li>
<li><strong>Multiple Thinking Models:</strong> Different models with unique reasoning styles</li>
</ul>
</div>
### πŸ” **Web Search Behavior (Groq Only)**
**No Domains Specified:**
- AI operates with **unrestricted web search capabilities**.
- Compound models autonomously search the **entire internet** for the most relevant and up-to-date information.
- AI has complete freedom to use its **agentic tools** and browse **any website** it finds useful.
**Include Domains Specified (e.g., `arxiv.org`, `*.edu`):**
- AI is restricted to search **only the specified domains**.
- Acts as a **strict whitelist**, making the AI **laser-focused** on your chosen sources.
- Ensures information is sourced from **preferred or authoritative domains** (e.g., academic or research-focused).
**Exclude Domains Specified (e.g., `wikipedia.org`, `reddit.com`):**
- AI searches the entire web **except the listed domains**.
- Useful for **filtering out unreliable or unwanted sources**.
- Allows broad search with **targeted exclusions**.
### πŸ€” **Thinking Models Behavior (Chutes Only)**
**How Thinking Models Work:**
- Models first **reason through the problem** in a thinking section
- You can see the **step-by-step thought process**
- The model then provides its **final polished answer**
- **Toggle thinking display** on/off as needed
**Best Use Cases for Thinking Models:**
- Complex mathematical problems
- Logical reasoning tasks
- Creative writing with planning
- Educational explanations
- Problem-solving scenarios
---
### 🎭 **Custom System Prompt Feature**
Allows complete override of the AI's **default personality and behavior** for both providers.
You can redefine the AI to act as:
- A **professional business consultant**
- A **coding mentor**
- A **creative writer**
- A **step-by-step tutor** (especially effective with thinking models)
- A **specific character or persona**
- Provides full control to **reshape the AI's tone, expertise, and conversational style** with a single prompt.
""")
# How to Use Section
with gr.Accordion("πŸ“– How to Use This Enhanced Multi-Provider App with Thinking", open=False, elem_id="neuroscope-accordion"):
gr.Markdown("""
### πŸš€ Getting Started
1. **Choose your AI Provider** - Select between Groq (web search + agentic) or Chutes (thinking models)
2. **Enter your API Key** -
- Groq: Get one from [console.groq.com](https://console.groq.com/)
- Chutes: Get one from [chutes.ai](https://chutes.ai/)
3. **Select a model** - Choose from provider-specific model options
4. **Configure thinking display** - For Chutes, decide if you want to see the reasoning process
5. **Click Connect** - Validate your key and connect to the AI
6. **Start chatting!** - Type your message and get intelligent responses
### 🎯 Key Features
**πŸš€ Groq Features:**
- **Agentic AI**: The AI can use tools and search the web autonomously
- **Smart Citations**: Automatic source linking and citation formatting
- **Domain Filtering**: Control which websites the AI searches
- **Ultra-fast**: Groq's hardware-accelerated inference
**🎯 Chutes Features:**
- **Thinking Models**: See the model's step-by-step reasoning process
- **Multiple Models**: Access to GPT-OSS-20B, Llama 3.1, Claude 3 Sonnet
- **Educational**: Learn from AI's problem-solving approaches
- **Toggle Thinking**: Show/hide the reasoning process as needed
- **High Quality**: Excellent reasoning and analysis capabilities
**πŸ”„ Universal Features:**
- **Memory**: Maintains conversation context throughout the session
- **Customizable**: Adjust temperature, tokens, and system prompts
- **Provider Switching**: Easy switching between AI providers
### πŸ’‘ Tips for Best Results
**For Groq:**
- Be specific in your questions for better web search results
- Use domain filtering for specialized research
- Check the "Sources Used" section for all references
- Try different domain combinations to see varied results
**For Chutes (Thinking Models):**
- Ask complex, multi-step questions to see rich thinking processes
- Use for educational purposes - the thinking is very instructive
- Try mathematical problems, logical puzzles, or creative planning tasks
- Toggle thinking display based on whether you want to see the process
- Different models have different thinking styles - experiment!
**General:**
- Adjust temperature: higher for creativity, lower for precision
- Try different system prompts for different conversation styles
- Use the provider that best fits your current task
- For learning: use Chutes with thinking display enabled
- For research: use Groq with appropriate domain filtering
""")
# Sample Examples Section
with gr.Accordion("🎯 Sample Examples to Test Both Providers & Thinking", open=False, elem_id="neuroscope-accordion"):
gr.Markdown("""
<div class="example-box">
<h4>πŸ†š Provider Comparison Examples</h4>
<p>Try the same prompts with both providers to see the difference:</p>
<h4>πŸ€” Perfect for Thinking Models (Chutes)</h4>
<ul>
<li><strong>Math & Logic:</strong> "Solve this step by step: If a train travels 120 miles in 2 hours, and then 180 miles in 3 hours, what's the average speed for the entire journey?"</li>
<li><strong>Problem Solving:</strong> "I have a budget of $1000 for a home office setup. Help me plan the best allocation across desk, chair, computer, and lighting."</li>
<li><strong>Creative Planning:</strong> "Plan a short story about a time traveler who accidentally changes history. Walk through the plot structure."</li>
<li><strong>Analysis:</strong> "Compare and contrast the pros and cons of remote work vs office work, considering productivity, collaboration, and work-life balance."</li>
</ul>
<h4>πŸ”¬ Research & Real-time Info (Groq)</h4>
<ul>
<li><strong>Current Events:</strong> "What are the latest developments in AI research in 2024?"</li>
<li><strong>Tech Updates:</strong> "What are the newest features in React 19?"</li>
<li><strong>Market Analysis:</strong> "Current trends in cryptocurrency markets with sources"</li>
<li><strong>Scientific Updates:</strong> "Recent breakthroughs in quantum computing research"</li>
</ul>
<h4>πŸ’» Programming & Tech (Compare Both)</h4>
<ul>
<li><strong>Groq:</strong> "What are the current best practices for React 18 in 2024?" (with web search)</li>
<li><strong>Chutes:</strong> "Explain how to build a React component with useState, and walk through your reasoning for the design choices"</li>
</ul>
<h4>🎨 Creative Tasks (Great for Thinking Models)</h4>
<ul>
<li>"Write a marketing strategy for a new eco-friendly product, showing your planning process"</li>
<li>"Create a study plan for learning Python in 3 months, explaining your reasoning for each phase"</li>
<li>"Design a mobile app concept for meditation, walking through your design thinking"</li>
</ul>
<h4>🧠 Model-Specific Testing (Chutes Thinking)</h4>
<ul>
<li><strong>GPT-OSS-20B:</strong> "Explain quantum entanglement in simple terms, showing your thought process for making it accessible"</li>
<li><strong>Llama 3.1:</strong> "Debug this Python code and explain your debugging approach: [code with intentional errors]"</li>
<li><strong>Claude 3 Sonnet:</strong> "Analyze this business scenario and provide strategic recommendations, showing your analytical framework"</li>
</ul>
<h4>πŸ“Š Side-by-Side Comparisons</h4>
<ul>
<li><strong>Same Question, Different Providers:</strong> Ask "How do neural networks work?" to both providers</li>
<li><strong>Groq Result:</strong> Fast response with potential web sources and current information</li>
<li><strong>Chutes Result:</strong> Detailed thinking process showing how the model breaks down the explanation</li>
</ul>
</div>
""")
# Event handlers - Updated to include thinking toggle
send_btn.click(
fn=chat_with_ai,
inputs=[msg, include_domains, exclude_domains, system_prompt, temperature, max_tokens, chatbot, show_thinking],
outputs=[chatbot, msg]
)
msg.submit(
fn=chat_with_ai,
inputs=[msg, include_domains, exclude_domains, system_prompt, temperature, max_tokens, chatbot, show_thinking],
outputs=[chatbot, msg]
)
clear_btn.click(
fn=clear_chat_history,
outputs=[chatbot]
)
# Footer
with gr.Accordion("πŸš€ About This Enhanced Multi-Provider Tool with Thinking", open=True, elem_id="neuroscope-accordion"):
gr.Markdown("""
**Enhanced Multi-Provider Creative Agentic AI Chat Tool** with thinking model support:
**πŸ†• New Thinking Model Features:**
- πŸ€” **Thinking Process Visualization**: See step-by-step reasoning from Chutes models
- 🧠 **Multiple Thinking Models**: GPT-OSS-20B, Llama 3.1, Claude 3 Sonnet with reasoning
- πŸ”„ **Toggle Thinking Display**: Choose to show or hide the reasoning process
- πŸ“š **Educational Value**: Learn from AI's problem-solving approaches
- 🎯 **Better Accuracy**: Thinking process often leads to more accurate responses
**πŸš€ Groq Features:**
- πŸ”— **Automatic Source Citations**: Every response includes clickable links to sources
- πŸ“š **Sources Used Section**: Dedicated section showing all websites referenced
- 🌐 **Domain Filtering Verification**: Clear indication when filtering is applied
- πŸ” **Search Query Tracking**: Shows what queries were made
- ⚑ **Enhanced Tool Usage Display**: Better visibility into AI's research process
- πŸ” Web search with domain filtering
- 🧠 Advanced AI reasoning with tool usage
**🎯 Chutes Features:**
- πŸ€– **Multiple Thinking Models**: Various AI models with visible reasoning
- πŸ’° **Cost-Effective**: Competitive pricing for AI access
- 🎨 **Creative Excellence**: Optimized for reasoning and analysis tasks
- ⚑ **Reliable Performance**: Consistent and thoughtful responses
- πŸ“– **Learning Tool**: Perfect for understanding AI reasoning
**πŸ”„ Universal Features:**
- πŸ’¬ Conversational memory and context
- βš™οΈ Customizable parameters and prompts
- 🎨 Creative and analytical capabilities
- 🌟 Enhanced user interface with provider-specific optimizations
**πŸ’‘ Choose Your Provider:**
- **Use Groq** when you need real-time information, web search, and citations
- **Use Chutes** when you want to see the thinking process, need complex reasoning, or want educational explanations
- **Toggle thinking display** in Chutes to customize your experience
**πŸŽ“ Perfect for:**
- Students learning problem-solving approaches
- Developers wanting to understand AI reasoning
- Researchers needing both current information (Groq) and deep analysis (Chutes)
- Anyone curious about how AI thinks through problems
""")
return app
# Main execution
if __name__ == "__main__":
app = create_gradio_app()
app.launch(
share=True
)