Spaces:
Sleeping
Sleeping
import os | |
import json | |
import time | |
import gradio as gr | |
from datetime import datetime | |
from typing import List, Dict, Any, Optional, Union | |
import threading | |
import re | |
# Import Groq | |
from groq import Groq | |
class CreativeAgenticAI: | |
""" | |
Creative Agentic AI Chat Tool using Groq's models with browser search and compound models | |
""" | |
def __init__(self, api_key: str, model: str = "compound-beta"): | |
""" | |
Initialize the Creative Agentic AI system. | |
Args: | |
api_key: Groq API key | |
model: Which Groq model to use | |
""" | |
self.api_key = api_key | |
if not self.api_key: | |
raise ValueError("No API key provided") | |
self.client = Groq(api_key=self.api_key) | |
self.model = model | |
self.conversation_history = [] | |
# Available models with their capabilities | |
self.available_models = { | |
"compound-beta": {"supports_web_search": True, "supports_browser_search": False}, | |
"compound-beta-mini": {"supports_web_search": True, "supports_browser_search": False}, | |
"openai/gpt-oss-20b": {"supports_web_search": False, "supports_browser_search": True}, | |
"llama-3.3-70b-versatile": {"supports_web_search": False, "supports_browser_search": True}, | |
"llama-3.1-70b-versatile": {"supports_web_search": False, "supports_browser_search": True}, | |
"mixtral-8x7b-32768": {"supports_web_search": False, "supports_browser_search": True}, | |
} | |
def chat(self, message: str, | |
include_domains: List[str] = None, | |
exclude_domains: List[str] = None, | |
system_prompt: str = None, | |
temperature: float = 0.7, | |
max_tokens: int = 1024, | |
search_type: str = "auto", | |
force_search: bool = False) -> Dict: | |
""" | |
Send a message to the AI and get a response with flexible search options | |
Args: | |
message: User's message | |
include_domains: List of domains to include for web search | |
exclude_domains: List of domains to exclude from web search | |
system_prompt: Custom system prompt | |
temperature: Model temperature (0.0-2.0) | |
max_tokens: Maximum tokens in response | |
search_type: 'web_search', 'browser_search', 'auto', or 'none' | |
force_search: Force the AI to use search tools | |
Returns: | |
AI response with metadata | |
""" | |
# Enhanced system prompt for better citation behavior | |
if not system_prompt: | |
citation_instruction = """ | |
IMPORTANT: When you search the web and find information, you MUST: | |
1. Always cite your sources with clickable links in this format: [Source Title](URL) | |
2. Include multiple diverse sources when possible | |
3. Show which specific websites you used for each claim | |
4. At the end of your response, provide a "Sources Used" section with all the links | |
5. Be transparent about which information comes from which source | |
""" | |
domain_context = "" | |
if include_domains and self._supports_web_search(): | |
domain_context = f"\nYou are restricted to searching ONLY these domains: {', '.join(include_domains)}. Make sure to find and cite sources specifically from these domains." | |
elif exclude_domains and self._supports_web_search(): | |
domain_context = f"\nAvoid searching these domains: {', '.join(exclude_domains)}. Search everywhere else on the web." | |
search_instruction = "" | |
if search_type == "browser_search": | |
search_instruction = "\nUse browser search tools to find the most current and relevant information from the web." | |
elif search_type == "web_search": | |
search_instruction = "\nUse web search capabilities to find relevant information." | |
elif force_search: | |
if self._supports_browser_search(): | |
search_instruction = "\nYou MUST use search tools to find current information before responding." | |
elif self._supports_web_search(): | |
search_instruction = "\nYou MUST use web search to find current information before responding." | |
system_prompt = f"""You are a creative and intelligent AI assistant with agentic capabilities. | |
You can search the web, analyze information, and provide comprehensive responses. | |
Be helpful, creative, and engaging while maintaining accuracy. | |
{citation_instruction} | |
{domain_context} | |
{search_instruction} | |
Your responses should be well-structured, informative, and properly cited with working links.""" | |
# Build messages | |
messages = [{"role": "system", "content": system_prompt}] | |
# Add conversation history (last 10 exchanges) | |
messages.extend(self.conversation_history[-20:]) # Last 10 user-assistant pairs | |
# Add current message with context | |
enhanced_message = message | |
if include_domains or exclude_domains: | |
filter_context = [] | |
if include_domains: | |
filter_context.append(f"ONLY search these domains: {', '.join(include_domains)}") | |
if exclude_domains: | |
filter_context.append(f"EXCLUDE these domains: {', '.join(exclude_domains)}") | |
enhanced_message += f"\n\n[Domain Filtering: {' | '.join(filter_context)}]" | |
messages.append({"role": "user", "content": enhanced_message}) | |
# Set up API parameters | |
params = { | |
"messages": messages, | |
"model": self.model, | |
"temperature": temperature, | |
"max_completion_tokens": max_tokens if self._supports_browser_search() else None, | |
"max_tokens": max_tokens if not self._supports_browser_search() else None, | |
} | |
# Add domain filtering for compound models | |
if self._supports_web_search(): | |
if include_domains and include_domains[0].strip(): | |
params["include_domains"] = [domain.strip() for domain in include_domains if domain.strip()] | |
if exclude_domains and exclude_domains[0].strip(): | |
params["exclude_domains"] = [domain.strip() for domain in exclude_domains if domain.strip()] | |
# Add tools based on search type and model capabilities | |
tools = [] | |
tool_choice = None | |
if search_type == "browser_search" and self._supports_browser_search(): | |
tools = [{"type": "browser_search"}] | |
tool_choice = "required" if force_search else "auto" | |
elif search_type == "auto": | |
if self._supports_browser_search(): | |
tools = [{"type": "browser_search"}] | |
tool_choice = "required" if force_search else "auto" | |
elif force_search and self._supports_browser_search(): | |
tools = [{"type": "browser_search"}] | |
tool_choice = "required" | |
if tools: | |
params["tools"] = tools | |
params["tool_choice"] = tool_choice | |
try: | |
# Make the API call | |
response = self.client.chat.completions.create(**params) | |
content = response.choices[0].message.content | |
# Extract tool usage information and enhance it | |
tool_info = self._extract_tool_info(response) | |
# Process content to enhance citations | |
processed_content = self._enhance_citations(content, tool_info) | |
# Add to conversation history | |
self.conversation_history.append({"role": "user", "content": message}) | |
self.conversation_history.append({"role": "assistant", "content": processed_content}) | |
# Create response object | |
response_data = { | |
"content": processed_content, | |
"timestamp": datetime.now().isoformat(), | |
"model": self.model, | |
"tool_usage": tool_info, | |
"search_type_used": search_type, | |
"parameters": { | |
"temperature": temperature, | |
"max_tokens": max_tokens, | |
"include_domains": include_domains, | |
"exclude_domains": exclude_domains, | |
"force_search": force_search | |
} | |
} | |
return response_data | |
except Exception as e: | |
error_msg = f"Error: {str(e)}" | |
self.conversation_history.append({"role": "user", "content": message}) | |
self.conversation_history.append({"role": "assistant", "content": error_msg}) | |
return { | |
"content": error_msg, | |
"timestamp": datetime.now().isoformat(), | |
"model": self.model, | |
"tool_usage": None, | |
"error": str(e) | |
} | |
def _supports_web_search(self) -> bool: | |
"""Check if current model supports web search (compound models)""" | |
return self.available_models.get(self.model, {}).get("supports_web_search", False) | |
def _supports_browser_search(self) -> bool: | |
"""Check if current model supports browser search tools""" | |
return self.available_models.get(self.model, {}).get("supports_browser_search", False) | |
def _extract_tool_info(self, response) -> Dict: | |
"""Extract tool usage information in a JSON serializable format""" | |
tool_info = { | |
"tools_used": [], | |
"search_queries": [], | |
"sources_found": [] | |
} | |
# Check for executed_tools attribute (compound models) | |
if hasattr(response.choices[0].message, 'executed_tools'): | |
tools = response.choices[0].message.executed_tools | |
if tools: | |
for tool in tools: | |
tool_dict = { | |
"tool_type": getattr(tool, "type", "unknown"), | |
"tool_name": getattr(tool, "name", "unknown"), | |
} | |
# Extract search queries and results | |
if hasattr(tool, "input"): | |
tool_input = str(tool.input) | |
tool_dict["input"] = tool_input | |
# Try to extract search query | |
if "search" in tool_dict["tool_name"].lower(): | |
tool_info["search_queries"].append(tool_input) | |
if hasattr(tool, "output"): | |
tool_output = str(tool.output) | |
tool_dict["output"] = tool_output | |
# Try to extract URLs from output | |
urls = self._extract_urls(tool_output) | |
tool_info["sources_found"].extend(urls) | |
tool_info["tools_used"].append(tool_dict) | |
# Check for tool_calls attribute (browser search models) | |
if hasattr(response.choices[0].message, 'tool_calls') and response.choices[0].message.tool_calls: | |
for tool_call in response.choices[0].message.tool_calls: | |
tool_dict = { | |
"tool_type": tool_call.type if hasattr(tool_call, 'type') else "browser_search", | |
"tool_name": tool_call.function.name if hasattr(tool_call, 'function') else "browser_search", | |
"tool_id": tool_call.id if hasattr(tool_call, 'id') else None | |
} | |
if hasattr(tool_call, 'function') and hasattr(tool_call.function, 'arguments'): | |
try: | |
args = json.loads(tool_call.function.arguments) if isinstance(tool_call.function.arguments, str) else tool_call.function.arguments | |
tool_dict["arguments"] = args | |
if "query" in args: | |
tool_info["search_queries"].append(args["query"]) | |
except: | |
tool_dict["arguments"] = str(tool_call.function.arguments) | |
tool_info["tools_used"].append(tool_dict) | |
return tool_info | |
def _extract_urls(self, text: str) -> List[str]: | |
"""Extract URLs from text""" | |
url_pattern = r'https?://[^\s<>"]{2,}' | |
urls = re.findall(url_pattern, text) | |
return list(set(urls)) # Remove duplicates | |
def _enhance_citations(self, content: str, tool_info: Dict) -> str: | |
"""Enhance content with better citation formatting""" | |
if not tool_info or not tool_info.get("sources_found"): | |
return content | |
# Add sources section if not already present | |
if "Sources Used:" not in content and "sources:" not in content.lower(): | |
sources_section = "\n\n---\n\n### π Sources Used:\n" | |
for i, url in enumerate(tool_info["sources_found"][:10], 1): # Limit to 10 sources | |
# Try to extract domain name for better formatting | |
domain = self._extract_domain(url) | |
sources_section += f"{i}. [{domain}]({url})\n" | |
content += sources_section | |
return content | |
def _extract_domain(self, url: str) -> str: | |
"""Extract domain name from URL for display""" | |
try: | |
if url.startswith(('http://', 'https://')): | |
domain = url.split('/')[2] | |
# Remove www. prefix if present | |
if domain.startswith('www.'): | |
domain = domain[4:] | |
return domain | |
return url | |
except: | |
return url | |
def get_model_info(self) -> Dict: | |
"""Get information about current model capabilities""" | |
return self.available_models.get(self.model, {}) | |
def clear_history(self): | |
"""Clear conversation history""" | |
self.conversation_history = [] | |
def get_history_summary(self) -> str: | |
"""Get a summary of conversation history""" | |
if not self.conversation_history: | |
return "No conversation history" | |
user_messages = [msg for msg in self.conversation_history if msg["role"] == "user"] | |
assistant_messages = [msg for msg in self.conversation_history if msg["role"] == "assistant"] | |
return f"Conversation: {len(user_messages)} user messages, {len(assistant_messages)} assistant responses" | |
# Global variables | |
ai_instance = None | |
api_key_status = "Not Set" | |
def validate_api_key(api_key: str, model: str) -> str: | |
"""Validate Groq API key and initialize AI instance""" | |
global ai_instance, api_key_status | |
if not api_key or len(api_key.strip()) < 10: | |
api_key_status = "Invalid β" | |
return "β Please enter a valid API key (should be longer than 10 characters)" | |
try: | |
# Test the API key | |
client = Groq(api_key=api_key) | |
# Try a simple request to validate | |
test_response = client.chat.completions.create( | |
messages=[{"role": "user", "content": "Hello"}], | |
model=model, | |
max_completion_tokens=10 if model in ["openai/gpt-oss-20b", "llama-3.3-70b-versatile", "llama-3.1-70b-versatile", "mixtral-8x7b-32768"] else None, | |
max_tokens=10 if model in ["compound-beta", "compound-beta-mini"] else None | |
) | |
# Create AI instance | |
ai_instance = CreativeAgenticAI(api_key=api_key, model=model) | |
api_key_status = "Valid β " | |
model_info = ai_instance.get_model_info() | |
capabilities = [] | |
if model_info.get("supports_web_search"): | |
capabilities.append("π Web Search with Domain Filtering") | |
if model_info.get("supports_browser_search"): | |
capabilities.append("π Browser Search Tools") | |
cap_text = " | ".join(capabilities) if capabilities else "π¬ Chat Only" | |
return f"β API Key Valid! NeuroScope AI is ready.\n\n**Model:** {model}\n**Capabilities:** {cap_text}\n**Status:** Connected and ready for chat!" | |
except Exception as e: | |
api_key_status = "Invalid β" | |
ai_instance = None | |
return f"β Error validating API key: {str(e)}\n\nPlease check your API key and try again." | |
def update_model(model: str) -> str: | |
"""Update the model selection""" | |
global ai_instance | |
if ai_instance: | |
ai_instance.model = model | |
model_info = ai_instance.get_model_info() | |
capabilities = [] | |
if model_info.get("supports_web_search"): | |
capabilities.append("π Web Search with Domain Filtering") | |
if model_info.get("supports_browser_search"): | |
capabilities.append("π Browser Search Tools") | |
cap_text = " | ".join(capabilities) if capabilities else "π¬ Chat Only" | |
return f"β Model updated to: **{model}**\n**Capabilities:** {cap_text}" | |
else: | |
return "β οΈ Please set your API key first" | |
def get_search_options(model: str) -> gr.update: | |
"""Get available search options based on model""" | |
if not ai_instance: | |
return gr.update(choices=["none"], value="none") | |
model_info = ai_instance.available_models.get(model, {}) | |
options = ["none"] | |
if model_info.get("supports_web_search"): | |
options.extend(["web_search", "auto"]) | |
if model_info.get("supports_browser_search"): | |
options.extend(["browser_search", "auto"]) | |
# Remove duplicates while preserving order | |
options = list(dict.fromkeys(options)) | |
default_value = "auto" if "auto" in options else "none" | |
return gr.update(choices=options, value=default_value) | |
def chat_with_ai(message: str, | |
include_domains: str, | |
exclude_domains: str, | |
system_prompt: str, | |
temperature: float, | |
max_tokens: int, | |
search_type: str, | |
force_search: bool, | |
history: List) -> tuple: | |
"""Main chat function""" | |
global ai_instance | |
if not ai_instance: | |
error_msg = "β οΈ Please set your Groq API key first!" | |
history.append([message, error_msg]) | |
return history, "" | |
if not message.strip(): | |
return history, "" | |
# Process domain lists | |
include_list = [d.strip() for d in include_domains.split(",")] if include_domains.strip() else [] | |
exclude_list = [d.strip() for d in exclude_domains.split(",")] if exclude_domains.strip() else [] | |
try: | |
# Get AI response | |
response = ai_instance.chat( | |
message=message, | |
include_domains=include_list if include_list else None, | |
exclude_domains=exclude_list if exclude_list else None, | |
system_prompt=system_prompt if system_prompt.strip() else None, | |
temperature=temperature, | |
max_tokens=int(max_tokens), | |
search_type=search_type, | |
force_search=force_search | |
) | |
# Format response | |
ai_response = response["content"] | |
# Add enhanced tool usage info | |
if response.get("tool_usage"): | |
tool_info = response["tool_usage"] | |
tool_summary = [] | |
if tool_info.get("search_queries"): | |
tool_summary.append(f"π Search queries: {len(tool_info['search_queries'])}") | |
if tool_info.get("sources_found"): | |
tool_summary.append(f"π Sources found: {len(tool_info['sources_found'])}") | |
if tool_info.get("tools_used"): | |
tool_types = [tool.get("tool_type", "unknown") for tool in tool_info["tools_used"]] | |
unique_types = list(set(tool_types)) | |
tool_summary.append(f"π§ Tools used: {', '.join(unique_types)}") | |
if tool_summary: | |
ai_response += f"\n\n*{' | '.join(tool_summary)}*" | |
# Add search type info | |
search_info = [] | |
if response.get("search_type_used") and response["search_type_used"] != "none": | |
search_info.append(f"π Search type: {response['search_type_used']}") | |
if force_search: | |
search_info.append("β‘ Forced search enabled") | |
# Add domain filtering info | |
if include_list or exclude_list: | |
filter_info = [] | |
if include_list: | |
filter_info.append(f"β Included domains: {', '.join(include_list)}") | |
if exclude_list: | |
filter_info.append(f"β Excluded domains: {', '.join(exclude_list)}") | |
search_info.extend(filter_info) | |
if search_info: | |
ai_response += f"\n\n*π Search settings: {' | '.join(search_info)}*" | |
# Add to history | |
history.append([message, ai_response]) | |
return history, "" | |
except Exception as e: | |
error_msg = f"β Error: {str(e)}" | |
history.append([message, error_msg]) | |
return history, "" | |
def clear_chat_history(): | |
"""Clear the chat history""" | |
global ai_instance | |
if ai_instance: | |
ai_instance.clear_history() | |
return [] | |
def create_gradio_app(): | |
"""Create the main Gradio application""" | |
# Custom CSS for better styling | |
css = """ | |
.container { | |
max-width: 1200px; | |
margin: 0 auto; | |
} | |
.header { | |
text-align: center; | |
background: linear-gradient(to right, #00ff94, #00b4db); | |
color: white; | |
padding: 20px; | |
border-radius: 10px; | |
margin-bottom: 20px; | |
} | |
.status-box { | |
background-color: #f8f9fa; | |
border: 1px solid #dee2e6; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
.example-box { | |
background-color: #e8f4fd; | |
border-left: 4px solid #007bff; | |
padding: 15px; | |
margin: 10px 0; | |
border-radius: 0 8px 8px 0; | |
} | |
.domain-info { | |
background-color: #fff3cd; | |
border: 1px solid #ffeaa7; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
.citation-info { | |
background-color: #d1ecf1; | |
border: 1px solid #bee5eb; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
.search-info { | |
background-color: #e2e3e5; | |
border: 1px solid #c6c8ca; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
} | |
#neuroscope-accordion { | |
background: linear-gradient(to right, #00ff94, #00b4db); | |
border-radius: 8px; | |
} | |
""" | |
with gr.Blocks(css=css, title="π€ Creative Agentic AI Chat", theme=gr.themes.Ocean()) as app: | |
# Header | |
gr.HTML(""" | |
<div class="header"> | |
<h1>π€ NeuroScope-AI Enhanced</h1> | |
<p>Powered by Groq's Models with Web Search, Browser Search & Agentic Capabilities</p> | |
</div> | |
""") | |
# NeuroScope AI Section | |
with gr.Group(): | |
with gr.Accordion("π€ NeuroScope AI Enhanced", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
**Enhanced with Multiple Search Capabilities:** | |
- π§ **Intelligence** (Neuro): Advanced AI reasoning across multiple models | |
- π **Precision Search** (Scope): Domain filtering + Browser search tools | |
- π€ **AI Capabilities** (AI): Agentic behavior with tool usage | |
- β‘ **Dual Search**: Web search (compound models) + Browser search (other models) | |
- π― **Model Flexibility**: Choose the right model for your task | |
""") | |
# IMPORTANT Section with Enhanced Search Info | |
with gr.Group(): | |
with gr.Accordion("π IMPORTANT - Enhanced Search Capabilities!", open=True, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
<div class="search-info"> | |
<h3>π NEW: Multiple Search Types Available!</h3> | |
<h4>π Web Search Models (Compound Models)</h4> | |
<ul> | |
<li><strong>compound-beta:</strong> Most powerful with domain filtering</li> | |
<li><strong>compound-beta-mini:</strong> Faster with domain filtering</li> | |
<li><strong>Features:</strong> Include/exclude domains, autonomous web search</li> | |
</ul> | |
<h4>π Browser Search Models (Tool-based Models)</h4> | |
<ul> | |
<li><strong>openai/gpt-oss-20b:</strong> Fast browser search capabilities</li> | |
<li><strong>llama-3.3-70b-versatile:</strong> Advanced reasoning with search</li> | |
<li><strong>llama-3.1-70b-versatile:</strong> Reliable with search tools</li> | |
<li><strong>mixtral-8x7b-32768:</strong> Large context with search</li> | |
<li><strong>Features:</strong> Real-time browser search, current information</li> | |
</ul> | |
</div> | |
<div class="citation-info"> | |
<h3>π Enhanced Citation System</h3> | |
<p>All models now include:</p> | |
<ul> | |
<li><strong>Automatic Source Citations:</strong> Clickable links to sources</li> | |
<li><strong>Sources Used Section:</strong> Dedicated section showing all websites</li> | |
<li><strong>Search Type Indication:</strong> Shows which search method was used</li> | |
<li><strong>Tool Usage Display:</strong> Transparent about AI's research process</li> | |
</ul> | |
</div> | |
""") | |
# API Key and Model Selection Section | |
with gr.Row(): | |
with gr.Column(scale=2): | |
api_key = gr.Textbox( | |
label="π Groq API Key", | |
placeholder="Enter your Groq API key here...", | |
type="password", | |
info="Get your API key from: https://console.groq.com/" | |
) | |
# Advanced Settings | |
with gr.Accordion("βοΈ Advanced Settings", open=False, elem_id="neuroscope-accordion"): | |
with gr.Row(): | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=0.7, | |
step=0.1, | |
label="π‘οΈ Temperature", | |
info="Higher = more creative, Lower = more focused" | |
) | |
max_tokens = gr.Slider( | |
minimum=100, | |
maximum=4000, | |
value=1024, | |
step=100, | |
label="π Max Tokens", | |
info="Maximum length of response" | |
) | |
system_prompt = gr.Textbox( | |
label="π Custom System Prompt", | |
placeholder="Override the default system prompt...", | |
lines=3, | |
info="Leave empty to use default creative assistant prompt with enhanced citations" | |
) | |
# Model Comparison Section | |
with gr.Accordion("π Model Comparison Guide", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
### π Choose Your Model Based on Task: | |
**For Academic Research & Domain-Specific Search:** | |
- `compound-beta` or `compound-beta-mini` with include domains (*.edu, arxiv.org) | |
- Best for: Research papers, academic sources, filtered searches | |
**For Current Events & Real-Time Information:** | |
- `openai/gpt-oss-20b` or `llama-3.3-70b-versatile` with browser search | |
- Best for: News, current events, real-time data | |
**For General Knowledge & Creative Tasks:** | |
- Any model with search type = "auto" or "none" | |
- Best for: Creative writing, general questions, analysis | |
**For Programming & Technical Documentation:** | |
- `llama-3.1-70b-versatile` with browser search, or compound models with tech domains | |
- Best for: Code help, documentation, technical guides | |
""") | |
# Domain Examples Section | |
with gr.Accordion("π Common Domain Examples", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
**Academic & Research:** | |
- `arxiv.org`, `*.edu`, `scholar.google.com`, `researchgate.net`, `pubmed.ncbi.nlm.nih.gov` | |
**Technology & Programming:** | |
- `github.com`, `stackoverflow.com`, `docs.python.org`, `developer.mozilla.org`, `medium.com` | |
**News & Media:** | |
- `reuters.com`, `bbc.com`, `npr.org`, `apnews.com`, `cnn.com`, `nytimes.com` | |
**Business & Finance:** | |
- `bloomberg.com`, `wsj.com`, `nasdaq.com`, `sec.gov`, `investopedia.com` | |
**Science & Medicine:** | |
- `nature.com`, `science.org`, `pubmed.ncbi.nlm.nih.gov`, `who.int`, `cdc.gov` | |
**Government & Official:** | |
- `*.gov`, `*.org`, `un.org`, `worldbank.org`, `imf.org` | |
""") | |
# How to Use Section | |
with gr.Accordion("π How to Use This Enhanced App", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
### π Getting Started | |
1. **Enter your Groq API Key** - Get one from [console.groq.com](https://console.groq.com/) | |
2. **Select a model** - Choose based on your search needs: | |
- **Compound models**: For web search with domain filtering | |
- **Tool-based models**: For browser search with real-time data | |
3. **Configure search settings** - Choose search type and options | |
4. **Click Connect** - Validate your key and connect to the AI | |
5. **Start chatting!** - Type your message and get intelligent responses with citations | |
### π― Key Features | |
- **Dual Search Capabilities**: Web search + Browser search depending on model | |
- **Smart Citations**: Automatic source linking and citation formatting | |
- **Domain Filtering**: Control which websites the AI searches (compound models) | |
- **Real-time Search**: Get current information with browser search tools | |
- **Model Flexibility**: Choose the right model for your specific task | |
- **Enhanced Tool Visibility**: See exactly what search tools were used | |
### π‘ Tips for Best Results | |
**For Research Tasks:** | |
- Use compound models with domain filtering | |
- Include academic domains (*.edu, arxiv.org) for scholarly sources | |
- Use "Force Search" for the most current information | |
**For Current Events:** | |
- Use tool-based models (openai/gpt-oss-20b, llama models) | |
- Set search type to "browser_search" | |
- Enable "Force Search" for real-time data | |
**For Creative Tasks:** | |
- Any model works well | |
- Set search type to "none" for purely creative responses | |
- Use higher temperature (0.8-1.0) for more creativity | |
**For Technical Questions:** | |
- Use llama-3.1-70b-versatile for programming | |
- Include tech domains (github.com, stackoverflow.com) with compound models | |
- Use browser search for latest documentation | |
""") | |
# Sample Examples Section | |
with gr.Accordion("π― Sample Examples to Test Enhanced Search", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
<div class="example-box"> | |
<h4>π¬ Research & Analysis (Test Different Models)</h4> | |
**Compound Model + Domain Filtering:** | |
- Query: "What are the latest breakthroughs in quantum computing?" | |
- Model: compound-beta | |
- Include domains: "arxiv.org, *.edu, nature.com" | |
- Search type: web_search | |
**Browser Search Model:** | |
- Same query with openai/gpt-oss-20b | |
- Search type: browser_search | |
- Force search: enabled | |
<h4>π° Current Events (Browser Search Excellence)</h4> | |
**Real-time News:** | |
- Query: "What happened in AI industry this week?" | |
- Model: llama-3.3-70b-versatile | |
- Search type: browser_search | |
- Force search: enabled | |
**Compare with Web Search:** | |
- Same query with compound-beta | |
- Include domains: "reuters.com, bbc.com, techcrunch.com" | |
<h4>π» Programming & Tech (Model Comparison)</h4> | |
**Technical Documentation:** | |
- Query: "How to implement OAuth 2.0 in Python Flask?" | |
- Try with both model types: | |
- compound-beta with "github.com, docs.python.org, stackoverflow.com" | |
- llama-3.1-70b-versatile with browser_search | |
<h4>π¨ Creative Tasks (No Search Needed)</h4> | |
- Query: "Write a short story about AI and humans working together" | |
- Any model with search_type: "none" | |
- Higher temperature (0.8-1.0) | |
<h4>π Business Analysis (Filtered vs Real-time)</h4> | |
**Financial Data (Real-time):** | |
- Query: "Current cryptocurrency market trends" | |
- Model: openai/gpt-oss-20b | |
- Search type: browser_search | |
- Force search: enabled | |
**Business Analysis (Filtered):** | |
- Query: "Cryptocurrency adoption in enterprise" | |
- Model: compound-beta | |
- Include domains: "bloomberg.com, wsj.com, harvard.edu" | |
</div> | |
""") | |
# Event handlers | |
send_btn.click( | |
fn=chat_with_ai, | |
inputs=[msg, include_domains, exclude_domains, system_prompt, temperature, max_tokens, search_type, force_search, chatbot], | |
outputs=[chatbot, msg] | |
) | |
msg.submit( | |
fn=chat_with_ai, | |
inputs=[msg, include_domains, exclude_domains, system_prompt, temperature, max_tokens, search_type, force_search, chatbot], | |
outputs=[chatbot, msg] | |
) | |
clear_btn.click( | |
fn=clear_chat_history, | |
outputs=[chatbot] | |
) | |
# Footer | |
with gr.Accordion("π About This Enhanced NeuroScope AI", open=True, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
**Enhanced Creative Agentic AI Chat Tool** with dual search capabilities: | |
### π **New in This Version:** | |
- π **Browser Search Integration**: Real-time search with tool-based models | |
- π **Dual Search System**: Web search (compound) + Browser search (tool-based) | |
- π― **Model Flexibility**: 6 different models for different tasks | |
- β‘ **Force Search Option**: Make AI search even for general questions | |
- π§ **Enhanced Tool Visibility**: See exactly what search tools were used | |
- π **Model Comparison Guide**: Choose the right model for your task | |
### π **Core Features:** | |
- π **Automatic Source Citations**: Every response includes clickable links to sources | |
- π **Sources Used Section**: Dedicated section showing all websites referenced | |
- π **Smart Domain Filtering**: Control search scope (compound models) | |
- π **Real-time Browser Search**: Current information (tool-based models) | |
- π¬ **Conversational Memory**: Maintains context throughout the session | |
- βοΈ **Full Customization**: Adjust all parameters and prompts | |
- π¨ **Creative & Analytical**: Optimized for both creative and research tasks | |
### π οΈ **Technical Details:** | |
- **Compound Models**: compound-beta, compound-beta-mini (web search + domain filtering) | |
- **Tool-based Models**: openai/gpt-oss-20b, llama models, mixtral (browser search tools) | |
- **Automatic Search Type Detection**: AI chooses best search method | |
- **Enhanced Error Handling**: Robust error management and user feedback | |
- **Real-time Status Updates**: Live feedback on model capabilities and search settings | |
""") | |
return app | |
# Main execution | |
if __name__ == "__main__": | |
app = create_gradio_app() | |
app.launch( | |
share=True, | |
server_name="0.0.0.0", | |
server_port=7860 | |
) | |
with gr.Column(scale=2): | |
model_selection = gr.Radio( | |
choices=[ | |
"compound-beta", | |
"compound-beta-mini", | |
"openai/gpt-oss-20b", | |
"llama-3.3-70b-versatile", | |
"llama-3.1-70b-versatile", | |
"mixtral-8x7b-32768" | |
], | |
label="π§ Model Selection", | |
value="compound-beta", | |
info="Choose based on your search needs" | |
) | |
with gr.Column(scale=1): | |
connect_btn = gr.Button("π Connect", variant="primary", size="lg") | |
# Status display | |
status_display = gr.Markdown("### π Status: Not connected", elem_classes=["status-box"]) | |
# Connect button functionality | |
connect_btn.click( | |
fn=validate_api_key, | |
inputs=[api_key, model_selection], | |
outputs=[status_display] | |
) | |
model_selection.change( | |
fn=update_model, | |
inputs=[model_selection], | |
outputs=[status_display] | |
) | |
# Main Chat Interface | |
with gr.Tab("π¬ Chat"): | |
chatbot = gr.Chatbot( | |
label="Creative AI Assistant with Enhanced Search", | |
height=500, | |
show_label=True, | |
bubble_full_width=False, | |
show_copy_button=True | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
label="Your Message", | |
placeholder="Type your message here...", | |
lines=3 | |
) | |
with gr.Column(): | |
send_btn = gr.Button("π€ Send", variant="primary") | |
clear_btn = gr.Button("ποΈ Clear", variant="secondary") | |
# Search Settings | |
with gr.Accordion("π Search Settings", open=False, elem_id="neuroscope-accordion"): | |
with gr.Row(): | |
search_type = gr.Radio( | |
choices=["auto", "web_search", "browser_search", "none"], | |
label="π― Search Type", | |
value="auto", | |
info="Choose search method (auto = model decides)" | |
) | |
force_search = gr.Checkbox( | |
label="β‘ Force Search", | |
value=False, | |
info="Force AI to search even for general questions" | |
) | |
# Update search options when model changes | |
model_selection.change( | |
fn=get_search_options, | |
inputs=[model_selection], | |
outputs=[search_type] | |
) | |
# Domain Filtering Section (only for web search models) | |
with gr.Accordion("π Domain Filtering (Web Search Models Only)", open=False, elem_id="neuroscope-accordion"): | |
gr.Markdown(""" | |
<div class="domain-info"> | |
<h4>π Domain Filtering Guide</h4> | |
<p><strong>Note:</strong> Domain filtering only works with compound models (compound-beta, compound-beta-mini)</p> | |
<ul> | |
<li><strong>Include Domains:</strong> Only search these domains (comma-separated)</li> | |
<li><strong>Exclude Domains:</strong> Never search these domains (comma-separated)</li> | |
<li><strong>Examples:</strong> arxiv.org, *.edu, github.com, stackoverflow.com</li> | |
<li><strong>Wildcards:</strong> Use *.edu for all educational domains</li> | |
</ul> | |
</div> | |
""") | |
with gr.Row(): | |
include_domains = gr.Textbox( | |
label="β Include Domains (comma-separated)", | |
placeholder="arxiv.org, *.edu, github.com, stackoverflow.com", | |
info="Only search these domains (compound models only)" | |
) | |
exclude_domains = gr.Textbox( | |
label="β Exclude Domains (comma-separated)", | |
placeholder="wikipedia.org, reddit.com, twitter.com", | |
info="Never search these domains (compound models only)" | |
) |