Spaces:
Sleeping
Sleeping
File size: 11,936 Bytes
0db7db0 801e5d8 0db7db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import os
import re
import time
import base64 # image has to be converted to base64
from openai import OpenAI #openrouter access
from together import Together
from PIL import Image #pillow for image processing
import io
### function to create math solution from math problem text
def generate_math_solution_openrouter(api_key, problem_text, history=None):
if not api_key.strip():
return "Please enter your OpenRouter API key.", history
if not problem_text.strip():
return "Please enter a math problem so that I can solve it for you!",
try:
client=OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
messages= [
{"role": "system", "content":
"""You are an expert math tutor who explains concepts clearly and thoroughly.
Analyze the given math problem and provide a detailed step-by-step solution.
For each step:
1. Show the mathematical operation
2. Explain why this step is necessary
3. Connect it to relevant mathematical concepts
Format your response with clear section headers using markdown.
Begin with an "Initial Analysis" section, follow with numbered steps,
and conclude with a "Final Answer" section."""},
]
if history:
for exchange in history:
messages.append({"role": "user", "content": exchange[0]}) #asks a math prob
if exchange[1]: # Check if there's a response
messages.append({"role": "assistant", "content": exchange[1]}) #AI responses with a solution
# Add the current problem
messages.append({"role": "user", "content": f"Solve this math problem step-by-step: {problem_text}"})
# Create the completion
completion = client.chat.completions.create(
model="deepseek/deepseek-r1-0528:free",
messages=messages,
extra_headers={
"HTTP-Referer": "https://advancedmathtutor.edu",
"X-Title": "Advanced Math Tutor",
}
)
solution=completion.choices[0].message.content
# Update history
if history is None: #no convo
history = [] #my all convo saved here
history.append((problem_text, solution)) #now i update my convo history
return solution, history
except Exception as e:
error_message = f"Error: {str(e)}"
return error_message, history
#image processing
def image_to_base64(image_path):
if image_path is None:
return None
try:
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode("utf-8")
except Exception as e:
print(f"Error converting image to base64: {str(e)}")
return None
#### function for a math problem that uses image data (Together)
def generate_math_solution_together(api_key, problem_text, image_path=None, history=None):
if not api_key.strip():
return "Please enter your Together AI API key.", history
if not problem_text.strip() and image_path is None:
return "Please enter a math problem or upload an image of a math problem.", history
try:
client = Together(api_key=api_key)
messages= [
{"role": "system", "content":
"""You are an expert math tutor who explains concepts clearly and thoroughly.
Analyze the given math problem and provide a detailed step-by-step solution.
For each step:
1. Show the mathematical operation
2. Explain why this step is necessary
3. Connect it to relevant mathematical concepts
Format your response with clear section headers using markdown.
Begin with an "Initial Analysis" section, follow with numbered steps,
and conclude with a "Final Answer" section."""},
]
# Add conversation history if it exists
if history:
for exchange in history:
messages.append({"role": "user", "content": exchange[0]})
if exchange[1]: # Check if there's a response
messages.append({"role": "assistant", "content": exchange[1]})
# Prepare the user message content
user_message_content = [] # WE are going to add some instructions regarding how to solve the math problem in the image
# calculate the area of a circle with radius 6 cm (Image of a problem)
#problem text / user message = Before calculating area convert radius of 6 cm to meter first
# Add text content if provided
if problem_text.strip(): #image+instruction
user_message_content.append({
"type": "text",
"text": f"Solve this math problem: {problem_text}" #Before calculating area convert radius of 6 cm to meter first
})
else: #image
user_message_content.append({
"type": "text",
"text": "Solve this math problem from the image:"
})
# Add image if provided
if image_path:
# Convert image to base64
base64_image = image_to_base64(image_path)
if base64_image:
user_message_content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
})
# Add the user message with content
messages.append({
"role": "user", #conversation saved with image data+usermessage/instruction
"content": user_message_content
})
response=client.chat.completions.create( #TOgether
model="meta-llama/Llama-Vision-Free",
messages=messages,
stream=False
)
solution=response.choices[0].message.content #problem----> ans syntax
# Update history - for simplicity, just store the text problem
if history is None:
history = []
history.append((problem_text if problem_text.strip() else "Image problem", solution))
return solution, history
except Exception as e:
error_message = f"Error: {str(e)}"
return error_message, history
def create_demo(): #interface design complete
with gr.Blocks(theme=gr.themes.Ocean(primary_hue="blue")) as demo:
gr.Markdown("# 📚 Advanced Math Tutor")
gr.Markdown("""
This application provides step-by-step solutions to math problems using advanced AI models.
Choose between OpenRouter's Phi-4-reasoning-plus for text-based problems or Together AI's
Llama-Vision for problems with images.
""")
with gr.Tabs():
with gr.TabItem("Text Problem Solver (OpenRouter)"):
with gr.Row():
with gr.Column(scale=1): #left side column design complete
openrouter_api_key = gr.Textbox(
label="OpenRouter API Key",
placeholder="Enter your OpenRouter API key (starts with sk-or-)",
type="password"
)
text_problem_input = gr.Textbox(
label="Math Problem",
placeholder="Enter your math problem here...", #Solve the quadratic equation: 3x² + 5x - 2 = 0"
lines=5
)
example_problems = gr.Examples(
examples=[
["Solve the quadratic equation: 3x² + 5x - 2 = 0"],
["Find the derivative of f(x) = x³ln(x)"],
["Calculate the area of a circle with radius 5 cm"],
["Find all values of x that satisfy the equation: log₂(x-1) + log₂(x+3) = 5"]
],
inputs=[text_problem_input],
label="Example Problems"
)
with gr.Row():
openrouter_submit_btn = gr.Button("Solve Problem", variant="primary")
openrouter_clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
openrouter_solution_output = gr.Markdown(label="Solution")
# Store conversation history (invisible to user)
openrouter_conversation_history = gr.State(value=None)
# Button actions
openrouter_submit_btn.click(
fn=generate_math_solution_openrouter, #text problem solve
inputs=[openrouter_api_key, text_problem_input, openrouter_conversation_history],
outputs=[openrouter_solution_output, openrouter_conversation_history]
)
openrouter_clear_btn.click(
fn=lambda: ("", None),
inputs=[],
outputs=[openrouter_solution_output, openrouter_conversation_history]
)
with gr.TabItem("Image Problem Solver (Together AI)"):
with gr.Row():
with gr.Column(scale=1):
together_api_key = gr.Textbox(
label="Together AI API Key",
placeholder="Enter your Together AI API key",
type="password"
)
together_problem_input = gr.Textbox(
label="Problem Description/Instruction (Optional)",
placeholder="Enter additional context for the image problem...",
lines=3
)
together_image_input = gr.Image(
label="Upload Math Problem Image",
type="filepath"
)
with gr.Row():
together_submit_btn = gr.Button("Solve Problem", variant="primary")
together_clear_btn = gr.Button("Clear")
with gr.Column(scale=2):
together_solution_output = gr.Markdown(label="Solution")
# Store conversation history (invisible to user)
together_conversation_history = gr.State(value=None)
# Button actions
together_submit_btn.click(
fn=generate_math_solution_together,
inputs=[together_api_key, together_problem_input, together_image_input, together_conversation_history],
outputs=[together_solution_output, together_conversation_history]
)
together_clear_btn.click(
fn=lambda: ("", None),
inputs=[],
outputs=[together_solution_output, together_conversation_history]
)
# Footer
gr.Markdown("""
---
### About
This application uses Microsoft's Phi-4-reasoning-plus model via OpenRouter for text-based problems
and Llama-Vision-Free via Together AI for image-based problems.
Your API keys are required but not stored permanently.
""")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_demo()
demo.launch() |