Spaces:
Running
Running
Set up model
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time
|
3 |
+
from datetime import datetime
|
4 |
+
import pandas as pd
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from qdrant_client import QdrantClient
|
7 |
+
from qdrant_client.models import Filter, FieldCondition, MatchValue
|
8 |
+
|
9 |
+
import os
|
10 |
+
from qdrant_client import QdrantClient
|
11 |
+
|
12 |
+
qdrant_client = QdrantClient(
|
13 |
+
url=os.environ.get("Qdrant_url"),
|
14 |
+
api_key=os.environ.get("Qdrant_api")
|
15 |
+
)
|
16 |
+
|
17 |
+
# โมเดลที่โหลดล่วงหน้า
|
18 |
+
models = {
|
19 |
+
"E5 (intfloat/multilingual-e5-small)": SentenceTransformer('intfloat/multilingual-e5-small'),
|
20 |
+
"MiniLM (paraphrase-multilingual-MiniLM-L12-v2)": SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
|
21 |
+
"DistilUSE (distiluse-base-multilingual-cased-v1)": SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased-v1')
|
22 |
+
}
|
23 |
+
|
24 |
+
# Global memory to hold feedback state
|
25 |
+
latest_query_result = {"query": "", "result": "", "model": ""}
|
26 |
+
|
27 |
+
|
28 |
+
# 🔍 Search Functions
|
29 |
+
def search_with_e5(query):
|
30 |
+
embed = models["E5 (intfloat/multilingual-e5-small)"].encode("query: " + query)
|
31 |
+
return embed
|
32 |
+
|
33 |
+
def search_with_minilm(query):
|
34 |
+
embed = models["MiniLM (paraphrase-multilingual-MiniLM-L12-v2)"].encode(query)
|
35 |
+
return embed
|
36 |
+
|
37 |
+
def search_with_distiluse(query):
|
38 |
+
embed = models["DistilUSE (distiluse-base-multilingual-cased-v1)"].encode(query)
|
39 |
+
return embed
|
40 |
+
|
41 |
+
|
42 |
+
# 🌟 Main search function
|
43 |
+
def search_product(query, model_name):
|
44 |
+
start_time = time.time()
|
45 |
+
|
46 |
+
# Choose encoder function
|
47 |
+
if "E5" in model_name:
|
48 |
+
query_embed = search_with_e5(query)
|
49 |
+
elif "MiniLM" in model_name:
|
50 |
+
query_embed = search_with_minilm(query)
|
51 |
+
elif "DistilUSE" in model_name:
|
52 |
+
query_embed = search_with_distiluse(query)
|
53 |
+
else:
|
54 |
+
return "❌ ไม่พบโมเดล"
|
55 |
+
|
56 |
+
# Query Qdrant
|
57 |
+
result = qdrant_client.query_points(
|
58 |
+
collection_name="product_E5",
|
59 |
+
query=query_embed.tolist(),
|
60 |
+
with_payload=True,
|
61 |
+
query_filter=Filter(
|
62 |
+
must=[FieldCondition(key="type", match=MatchValue(value="product"))]
|
63 |
+
)
|
64 |
+
).points
|
65 |
+
|
66 |
+
elapsed = time.time() - start_time
|
67 |
+
|
68 |
+
# Format result
|
69 |
+
output = f"⏱ Time: {elapsed:.2f}s\n\n📦 ผลลัพธ์:\n"
|
70 |
+
result_summary = ""
|
71 |
+
for res in result:
|
72 |
+
line = f"- {res.payload.get('name', '')} (score: {res.score:.4f})"
|
73 |
+
output += line + "\n"
|
74 |
+
result_summary += line + " | "
|
75 |
+
|
76 |
+
# Save latest query
|
77 |
+
latest_query_result["query"] = query
|
78 |
+
latest_query_result["result"] = result_summary.strip()
|
79 |
+
latest_query_result["model"] = model_name
|
80 |
+
|
81 |
+
return output
|
82 |
+
|
83 |
+
|
84 |
+
# 📝 Logging feedback
|
85 |
+
def log_feedback(feedback):
|
86 |
+
now = datetime.now().isoformat()
|
87 |
+
log_entry = {
|
88 |
+
"timestamp": now,
|
89 |
+
"model": latest_query_result["model"],
|
90 |
+
"query": latest_query_result["query"],
|
91 |
+
"result": latest_query_result["result"],
|
92 |
+
"feedback": feedback
|
93 |
+
}
|
94 |
+
df = pd.DataFrame([log_entry])
|
95 |
+
df.to_csv("feedback_log.csv", mode='a', header=not pd.io.common.file_exists("feedback_log.csv"), index=False)
|
96 |
+
return f"✅ Feedback saved: {feedback}"
|
97 |
+
|
98 |
+
|
99 |
+
# 🎨 Gradio UI
|
100 |
+
with gr.Blocks() as demo:
|
101 |
+
gr.Markdown("## 🔎 Product Semantic Search (Vector Search + Qdrant)")
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
model_selector = gr.Dropdown(
|
105 |
+
choices=list(models.keys()),
|
106 |
+
label="เลือกโมเดล",
|
107 |
+
value="E5 (intfloat/multilingual-e5-small)"
|
108 |
+
)
|
109 |
+
query_input = gr.Textbox(label="พิมพ์คำค้นหา")
|
110 |
+
|
111 |
+
result_output = gr.Textbox(label="📋 ผลลัพธ์")
|
112 |
+
|
113 |
+
with gr.Row():
|
114 |
+
match_btn = gr.Button("✅ ตรง")
|
115 |
+
not_match_btn = gr.Button("❌ ไม่ตรง")
|
116 |
+
|
117 |
+
feedback_status = gr.Textbox(label="📬 สถานะ Feedback")
|
118 |
+
|
119 |
+
# Events
|
120 |
+
submit_fn = lambda q, m: search_product(q, m)
|
121 |
+
query_input.submit(submit_fn, inputs=[query_input, model_selector], outputs=result_output)
|
122 |
+
match_btn.click(lambda: log_feedback("match"), outputs=feedback_status)
|
123 |
+
not_match_btn.click(lambda: log_feedback("not_match"), outputs=feedback_status)
|
124 |
+
|
125 |
+
# Run app
|
126 |
+
demo.launch(share=True)
|