Spaces:
Running
Running
true collection
Browse files
app.py
CHANGED
@@ -5,63 +5,63 @@ import pandas as pd
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from qdrant_client import QdrantClient
|
7 |
from qdrant_client.models import Filter, FieldCondition, MatchValue
|
8 |
-
|
9 |
import os
|
10 |
-
|
11 |
|
12 |
qdrant_client = QdrantClient(
|
13 |
url=os.environ.get("Qdrant_url"),
|
14 |
-
api_key=os.environ.get("Qdrant_api")
|
15 |
)
|
16 |
|
17 |
# โมเดลที่โหลดล่วงหน้า
|
18 |
models = {
|
19 |
"E5 (intfloat/multilingual-e5-small)": SentenceTransformer('intfloat/multilingual-e5-small'),
|
20 |
-
"
|
21 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
|
24 |
# Global memory to hold feedback state
|
25 |
latest_query_result = {"query": "", "result": "", "model": ""}
|
26 |
|
27 |
-
|
28 |
-
# 🔍 Search Functions
|
29 |
-
def search_with_e5(query):
|
30 |
-
embed = models["E5 (intfloat/multilingual-e5-small)"].encode("query: " + query)
|
31 |
-
return embed
|
32 |
-
|
33 |
-
def search_with_minilm(query):
|
34 |
-
embed = models["MiniLM (paraphrase-multilingual-MiniLM-L12-v2)"].encode(query)
|
35 |
-
return embed
|
36 |
-
|
37 |
-
def search_with_distiluse(query):
|
38 |
-
embed = models["DistilUSE (distiluse-base-multilingual-cased-v1)"].encode(query)
|
39 |
-
return embed
|
40 |
-
|
41 |
-
|
42 |
# 🌟 Main search function
|
43 |
def search_product(query, model_name):
|
44 |
start_time = time.time()
|
45 |
|
46 |
-
|
47 |
-
if "E5" in model_name:
|
48 |
-
query_embed = search_with_e5(query)
|
49 |
-
elif "MiniLM" in model_name:
|
50 |
-
query_embed = search_with_minilm(query)
|
51 |
-
elif "DistilUSE" in model_name:
|
52 |
-
query_embed = search_with_distiluse(query)
|
53 |
-
else:
|
54 |
return "❌ ไม่พบโมเดล"
|
55 |
|
|
|
|
|
|
|
|
|
56 |
# Query Qdrant
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
65 |
|
66 |
elapsed = time.time() - start_time
|
67 |
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from qdrant_client import QdrantClient
|
7 |
from qdrant_client.models import Filter, FieldCondition, MatchValue
|
|
|
8 |
import os
|
9 |
+
|
10 |
|
11 |
qdrant_client = QdrantClient(
|
12 |
url=os.environ.get("Qdrant_url"),
|
13 |
+
api_key=os.environ.get("Qdrant_api"),
|
14 |
)
|
15 |
|
16 |
# โมเดลที่โหลดล่วงหน้า
|
17 |
models = {
|
18 |
"E5 (intfloat/multilingual-e5-small)": SentenceTransformer('intfloat/multilingual-e5-small'),
|
19 |
+
"E5 large instruct (multilingual-e5-large-instruct)": SentenceTransformer("intfloat/multilingual-e5-large-instruct"),
|
20 |
+
"Kalm (KaLM-embedding-multilingual-mini-v1)": SentenceTransformer('HIT-TMG/KaLM-embedding-multilingual-mini-v1')
|
21 |
+
}
|
22 |
+
|
23 |
+
model_config = {
|
24 |
+
"E5 (intfloat/multilingual-e5-small)": {
|
25 |
+
"func": lambda query: models["E5 (intfloat/multilingual-e5-small)"].encode("query: " + query),
|
26 |
+
"collection": "product_E5"
|
27 |
+
},
|
28 |
+
"E5 large instruct (multilingual-e5-large-instruct)": {
|
29 |
+
"func": lambda query: models["E5 large instruct (multilingual-e5-large-instruct)"].encode(
|
30 |
+
"Instruct: Given a product search query, retrieve relevant product listings\nQuery: " + query, convert_to_tensor=False, normalize_embeddings=True),
|
31 |
+
"collection": "product_E5_large_instruct"
|
32 |
+
},
|
33 |
+
"Kalm (KaLM-embedding-multilingual-mini-v1)": {
|
34 |
+
"func": lambda query: models["Kalm (KaLM-embedding-multilingual-mini-v1)"].encode(query, normalize_embeddings=True),
|
35 |
+
"collection": "product_kalm"
|
36 |
+
}
|
37 |
}
|
38 |
|
39 |
# Global memory to hold feedback state
|
40 |
latest_query_result = {"query": "", "result": "", "model": ""}
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# 🌟 Main search function
|
43 |
def search_product(query, model_name):
|
44 |
start_time = time.time()
|
45 |
|
46 |
+
if model_name not in model_config:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
return "❌ ไม่พบโมเดล"
|
48 |
|
49 |
+
query_embed = model_config[model_name]["func"](query)
|
50 |
+
collection_name = model_config[model_name]["collection"]
|
51 |
+
|
52 |
+
|
53 |
# Query Qdrant
|
54 |
+
try:
|
55 |
+
result = qdrant_client.query_points(
|
56 |
+
collection_name=collection_name,
|
57 |
+
query=query_embed.tolist(),
|
58 |
+
with_payload=True,
|
59 |
+
query_filter=Filter(
|
60 |
+
must=[FieldCondition(key="type", match=MatchValue(value="product"))]
|
61 |
+
)
|
62 |
+
).points
|
63 |
+
except Exception as e:
|
64 |
+
return f"❌ Qdrant error: {str(e)}"
|
65 |
|
66 |
elapsed = time.time() - start_time
|
67 |
|