Spaces:
Runtime error
Runtime error
File size: 38,697 Bytes
e448daa e48a694 a38609e ab3fd36 a38609e e48a694 bb8c1a0 e48a694 2fbc218 e48a694 710d0bb 0a4953a e48a694 710d0bb 813e0a6 c9455c1 ab3fd36 c9455c1 ab3fd36 c9455c1 ab3fd36 e48a694 c9455c1 0a4953a e48a694 43e28ee e48a694 ab3fd36 e48a694 2fbc218 e48a694 2fbc218 774a05d d6d87c3 e48a694 2fbc218 e48a694 2fbc218 e48a694 a38609e e48a694 2fbc218 e48a694 2fbc218 e48a694 2fbc218 e48a694 2393894 e48a694 2393894 e48a694 6fb9d53 6e0350e 59d8636 2c71175 6fb9d53 8661faf 28efb02 5b7aa6e 8661faf 59d8636 2c71175 59d8636 6fb9d53 0a4953a 87206b0 0a4953a 87206b0 0a4953a 87206b0 0a4953a 87206b0 0a4953a 87206b0 0a4953a 87206b0 0a4953a c00d182 0a4953a 87206b0 0a4953a f4c3443 87206b0 ba53ae6 6fb9d53 ba53ae6 0a4953a 87206b0 0a4953a e48a694 0a4953a ba53ae6 0a4953a e48a694 0a4953a ba53ae6 0a4953a e48a694 2fbc218 8b1091d e48a694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
import os
import logging
from dotenv import load_dotenv
import subprocess
import google.auth
# Force reinstall Gradio
subprocess.run(["pip", "install", "--upgrade", "gradio==4.44.1"])
import gradio as gr
import threading
import time
import tempfile
from datetime import datetime
from typing import Any
from langchain_core.output_parsers import StrOutputParser
from langchain_text_splitters import TokenTextSplitter
from langchain.retrievers.document_compressors import EmbeddingsFilter, DocumentCompressorPipeline
from langchain.retrievers import ContextualCompressionRetriever
from langchain_core.runnables import RunnableBranch
from langchain_core.callbacks import StdOutCallbackHandler, BaseCallbackHandler
from langchain_google_vertexai import HarmBlockThreshold, HarmCategory
from langchain_neo4j import Neo4jVector, Neo4jGraph, Neo4jChatMessageHistory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, AIMessage
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_huggingface import HuggingFaceEmbeddings
# LangChain chat models
from langchain_openai import ChatOpenAI, AzureChatOpenAI
from langchain_google_vertexai import ChatVertexAI
from langchain_anthropic import ChatAnthropic
from langchain_community.chat_models import ChatOllama
from langchain.globals import set_debug
# ElevenLabs and Cloud Translate
from google.cloud import translate
from elevenlabs import ElevenLabs, play
# Load environment variables
load_dotenv()
set_debug(True)
# process of getting credentials
def get_credentials():
"""Retrieve Google Cloud credentials from the environment variable and write them to a temporary file."""
creds_json_str = os.getenv("BOB") # Get JSON credentials stored as a string
if creds_json_str is None:
raise ValueError("Environment variable 'BOB' not found. Please set it with the JSON credentials.")
try:
# Create a temporary file to store the credentials
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json") as temp:
temp.write(creds_json_str) # Write the JSON string to the file
temp_filename = temp.name # Get the temporary file's name
logging.info(f"Temporary credentials file created at: {temp_filename}")
return temp_filename
except Exception as e:
logging.error(f"Error creating temporary credentials file: {e}")
raise
# Store the temporary file path
temp_credentials_file = get_credentials()
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = temp_credentials_file
os.environ["TOKENIZERS_PARALLELISM"] = "false"
project_id = os.getenv("PROJECT_ID")
# Neo4j Configuration
NEO4J_URI = os.getenv("NEO4J_URI")
NEO4J_USERNAME = os.getenv("NEO4J_USERNAME")
NEO4J_PASSWORD = os.getenv("NEO4J_PASSWORD")
NEO4J_DATABASE = os.getenv("NEO4J_DATABASE")
# Load credentials using google.auth
credentials, project_id = google.auth.default()
logging.info(f"Loaded credentials for project: {project_id}")
embedding_function = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
### Vector graph search
VECTOR_GRAPH_SEARCH_ENTITY_LIMIT = 40
VECTOR_GRAPH_SEARCH_EMBEDDING_MIN_MATCH = 0.3
VECTOR_GRAPH_SEARCH_EMBEDDING_MAX_MATCH = 0.9
VECTOR_GRAPH_SEARCH_ENTITY_LIMIT_MINMAX_CASE = 20
VECTOR_GRAPH_SEARCH_ENTITY_LIMIT_MAX_CASE = 40
# VECTOR_GRAPH_SEARCH_QUERY: Hybrid vector + graph retrieval Cypher query
VECTOR_GRAPH_SEARCH_QUERY_PREFIX = """
WITH node as chunk, score
// find the document of the chunk
MATCH (chunk)-[:PART_OF]->(d:Document)
// aggregate chunk-details
WITH d, collect(DISTINCT {chunk: chunk, score: score}) AS chunks, avg(score) as avg_score
// fetch entities
CALL { WITH chunks
UNWIND chunks as chunkScore
WITH chunkScore.chunk as chunk
"""
VECTOR_GRAPH_SEARCH_ENTITY_QUERY = """
OPTIONAL MATCH (chunk)-[:HAS_ENTITY]->(e)
WITH e, count(*) AS numChunks
ORDER BY numChunks DESC
LIMIT {no_of_entites}
WITH
CASE
WHEN e.embedding IS NULL OR ({embedding_match_min} <= vector.similarity.cosine($embedding, e.embedding) AND vector.similarity.cosine($embedding, e.embedding) <= {embedding_match_max}) THEN
collect {{
OPTIONAL MATCH path=(e)(()-[rels:!HAS_ENTITY&!PART_OF]-()){{0,1}}(:!Chunk&!Document&!__Community__)
RETURN path LIMIT {entity_limit_minmax_case}
}}
WHEN e.embedding IS NOT NULL AND vector.similarity.cosine($embedding, e.embedding) > {embedding_match_max} THEN
collect {{
OPTIONAL MATCH path=(e)(()-[rels:!HAS_ENTITY&!PART_OF]-()){{0,2}}(:!Chunk&!Document&!__Community__)
RETURN path LIMIT {entity_limit_max_case}
}}
ELSE
collect {{
MATCH path=(e)
RETURN path
}}
END AS paths, e
"""
VECTOR_GRAPH_SEARCH_QUERY_SUFFIX = """
WITH apoc.coll.toSet(apoc.coll.flatten(collect(DISTINCT paths))) AS paths,
collect(DISTINCT e) AS entities
// De-duplicate nodes and relationships across chunks
RETURN
collect {
UNWIND paths AS p
UNWIND relationships(p) AS r
RETURN DISTINCT r
} AS rels,
collect {
UNWIND paths AS p
UNWIND nodes(p) AS n
RETURN DISTINCT n
} AS nodes,
entities
}
// Generate metadata and text components for chunks, nodes, and relationships
WITH d, avg_score,
[c IN chunks | c.chunk.text] AS texts,
[c IN chunks | {id: c.chunk.id, score: c.score}] AS chunkdetails,
[n IN nodes | elementId(n)] AS entityIds,
[r IN rels | elementId(r)] AS relIds,
apoc.coll.sort([
n IN nodes |
coalesce(apoc.coll.removeAll(labels(n), ['__Entity__'])[0], "") + ":" +
coalesce(
n.id,
n[head([k IN keys(n) WHERE k =~ "(?i)(name|title|id|description)$"])],
""
) +
(CASE WHEN n.description IS NOT NULL THEN " (" + n.description + ")" ELSE "" END)
]) AS nodeTexts,
apoc.coll.sort([
r IN rels |
coalesce(apoc.coll.removeAll(labels(startNode(r)), ['__Entity__'])[0], "") + ":" +
coalesce(
startNode(r).id,
startNode(r)[head([k IN keys(startNode(r)) WHERE k =~ "(?i)(name|title|id|description)$"])],
""
) + " " + type(r) + " " +
coalesce(apoc.coll.removeAll(labels(endNode(r)), ['__Entity__'])[0], "") + ":" +
coalesce(
endNode(r).id,
endNode(r)[head([k IN keys(endNode(r)) WHERE k =~ "(?i)(name|title|id|description)$"])],
""
)
]) AS relTexts,
entities
// Combine texts into response text
WITH d, avg_score, chunkdetails, entityIds, relIds,
"Text Content:\n" + apoc.text.join(texts, "\n----\n") +
"\n----\nEntities:\n" + apoc.text.join(nodeTexts, "\n") +
"\n----\nRelationships:\n" + apoc.text.join(relTexts, "\n") AS text,
entities
RETURN
text,
avg_score AS score,
{
length: size(text),
source: COALESCE(CASE WHEN d.url CONTAINS "None" THEN d.fileName ELSE d.url END, d.fileName),
chunkdetails: chunkdetails,
entities : {
entityids: entityIds,
relationshipids: relIds
}
} AS metadata
"""
VECTOR_GRAPH_SEARCH_QUERY = VECTOR_GRAPH_SEARCH_QUERY_PREFIX+ VECTOR_GRAPH_SEARCH_ENTITY_QUERY.format(
no_of_entites=VECTOR_GRAPH_SEARCH_ENTITY_LIMIT,
embedding_match_min=VECTOR_GRAPH_SEARCH_EMBEDDING_MIN_MATCH,
embedding_match_max=VECTOR_GRAPH_SEARCH_EMBEDDING_MAX_MATCH,
entity_limit_minmax_case=VECTOR_GRAPH_SEARCH_ENTITY_LIMIT_MINMAX_CASE,
entity_limit_max_case=VECTOR_GRAPH_SEARCH_ENTITY_LIMIT_MAX_CASE
) + VECTOR_GRAPH_SEARCH_QUERY_SUFFIX
graph = Neo4jGraph(
url=NEO4J_URI,
username=NEO4J_USERNAME,
password=NEO4J_PASSWORD,
database=NEO4J_DATABASE
)
CHAT_TOKEN_CUT_OFF = {
('openai_gpt_3.5','azure_ai_gpt_35',"gemini_1.0_pro","gemini_1.5_pro", "gemini_1.5_flash","groq-llama3",'anthropic_claude_3_5_sonnet','bedrock_claude_3_5_sonnet', ) : 4,
("openai-gpt-4","diffbot" ,'azure_ai_gpt_4o',"openai_gpt_4o", "openai_gpt_4o_mini") : 28,
("ollama_llama3") : 2
}
# Prompt template
CHAT_SYSTEM_TEMPLATE = """
You are an AI-powered question-answering agent. Your task is to provide accurate and comprehensive responses to user queries based on the given context, chat history, and available resources.
### Response Guidelines:
1. **Direct Answers**: Provide clear and thorough answers to the user's queries without headers unless requested. Avoid speculative responses.
2. **Utilize History and Context**: Leverage relevant information from previous interactions, the current user input, and the context provided below.
3. **No Greetings in Follow-ups**: Start with a greeting in initial interactions. Avoid greetings in subsequent responses unless there's a significant break or the chat restarts.
4. **Admit Unknowns**: Clearly state if an answer is unknown. Avoid making unsupported statements.
5. **Avoid Hallucination**: Only provide information based on the context provided. Do not invent information.
6. **Response Length**: Keep responses concise and relevant. Aim for clarity and completeness within 4-5 sentences unless more detail is requested.
7. **Tone and Style**: Maintain a professional and informative tone. Be friendly and approachable.
8. **Error Handling**: If a query is ambiguous or unclear, ask for clarification rather than providing a potentially incorrect answer.
9. **Fallback Options**: If the required information is not available in the provided context, provide a polite and helpful response. Example: "I don't have that information right now." or "I'm sorry, but I don't have that information. Is there something else I can help with?"
10. **Context Availability**: If the context is empty, do not provide answers based solely on internal knowledge. Instead, respond appropriately by indicating the lack of information.
**IMPORTANT** : DO NOT ANSWER FROM YOUR KNOWLEDGE BASE USE THE BELOW CONTEXT
### Context:
<context>
{context}
</context>
### Example Responses:
User: Hi
AI Response: 'Hello there! How can I assist you today?'
User: "What is Langchain?"
AI Response: "Langchain is a framework that enables the development of applications powered by large language models, such as chatbots. It simplifies the integration of language models into various applications by providing useful tools and components."
User: "Can you explain how to use memory management in Langchain?"
AI Response: "Langchain's memory management involves utilizing built-in mechanisms to manage conversational context effectively. It ensures that the conversation remains coherent and relevant by maintaining the history of interactions and using it to inform responses."
User: "I need help with PyCaret's classification model."
AI Response: "PyCaret simplifies the process of building and deploying machine learning models. For classification tasks, you can use PyCaret's setup function to prepare your data. After setup, you can compare multiple models to find the best one, and then fine-tune it for better performance."
User: "What can you tell me about the latest realtime trends in AI?"
AI Response: "I don't have that information right now. Is there something else I can help with?"
Note: This system does not generate answers based solely on internal knowledge. It answers from the information provided in the user's current and previous inputs, and from the context.
"""
QUESTION_TRANSFORM_TEMPLATE = "Given the below conversation, generate a search query to look up in order to get information relevant to the conversation. Only respond with the query, nothing else."
prompt_template = ChatPromptTemplate.from_messages([
("system", CHAT_SYSTEM_TEMPLATE),
MessagesPlaceholder(variable_name="messages"),
("human", "User question: {input}")
])
class SessionChatHistory:
history_dict = {}
@classmethod
def get_chat_history(cls, session_id):
"""Retrieve or create chat message history for a given session ID."""
if session_id not in cls.history_dict:
logging.info(f"Creating new ChatMessageHistory Local for session ID: {session_id}")
cls.history_dict[session_id] = ChatMessageHistory()
else:
logging.info(f"Retrieved existing ChatMessageHistory Local for session ID: {session_id}")
return cls.history_dict[session_id]
class CustomCallback(BaseCallbackHandler):
def __init__(self):
self.transformed_question = None
def on_llm_end(
self,response, **kwargs: Any
) -> None:
logging.info("question transformed")
self.transformed_question = response.generations[0][0].text.strip()
def get_history_by_session_id(session_id):
try:
return SessionChatHistory.get_chat_history(session_id)
except Exception as e:
logging.error(f"Failed to get history for session ID '{session_id}': {e}")
raise
# LLM selector supporting OpenAI, Gemini, Claude
def get_llm(model: str):
"""Retrieve the specified language model based on the model name."""
model = model.lower().strip()
env_key = f"LLM_MODEL_CONFIG_{model.replace('-', '_').replace('.', '_')}" # Replace both dashes and periods
env_value = os.environ.get(env_key.upper())
if not env_value:
err = f"Environment variable '{env_key}' is not defined as per format or missing"
logging.error(err)
raise Exception(err)
logging.info("Model: {}".format(env_key))
try:
if "gemini" in model:
model_name = env_value
credentials, project_id = google.auth.default()
llm = ChatVertexAI(
model_name=model_name,
credentials=credentials,
project=project_id,
temperature=0,
safety_settings={
HarmCategory.HARM_CATEGORY_UNSPECIFIED: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
},
)
elif "openai" in model:
model_name, api_key = env_value.split(",")
llm = ChatOpenAI(api_key=api_key, model=model_name, temperature=0)
elif "claude" in model or "anthropic" in model:
model_name, api_key = env_value.split(",")
llm = ChatAnthropic(api_key=api_key, model=model_name, temperature=0)
else:
raise ValueError(f"Unsupported model type for: {model}")
except Exception as e:
err = f"Error while creating LLM '{model}': {str(e)}"
logging.error(err)
raise Exception(err)
logging.info(f"Model created - Model Version: {model_name}")
return llm, model_name
def summarize_and_log(history, stored_messages, llm):
logging.info("Starting summarization in a separate thread.")
if not stored_messages:
logging.info("No messages to summarize.")
return False
try:
start_time = time.time()
summarization_prompt = ChatPromptTemplate.from_messages(
[
MessagesPlaceholder(variable_name="chat_history"),
(
"human",
"Summarize the above chat messages into a concise message, focusing on key points and relevant details that could be useful for future conversations. Exclude all introductions and extraneous information."
),
]
)
summarization_chain = summarization_prompt | llm
summary_message = summarization_chain.invoke({"chat_history": stored_messages})
with threading.Lock():
history.clear()
history.add_user_message("Our current conversation summary till now")
history.add_message(summary_message)
history_summarized_time = time.time() - start_time
logging.info(f"Chat History summarized in {history_summarized_time:.2f} seconds")
return True
except Exception as e:
logging.error(f"An error occurred while summarizing messages: {e}", exc_info=True)
return False
def get_total_tokens(ai_response, llm):
try:
if isinstance(llm, (ChatOpenAI, AzureChatOpenAI)):
total_tokens = ai_response.response_metadata.get('token_usage', {}).get('total_tokens', 0)
elif isinstance(llm, ChatVertexAI):
total_tokens = ai_response.response_metadata.get('usage_metadata', {}).get('prompt_token_count', 0)
elif isinstance(llm, ChatAnthropic):
input_tokens = int(ai_response.response_metadata.get('usage', {}).get('input_tokens', 0))
output_tokens = int(ai_response.response_metadata.get('usage', {}).get('output_tokens', 0))
total_tokens = input_tokens + output_tokens
elif isinstance(llm, ChatOllama):
total_tokens = ai_response.response_metadata.get("prompt_eval_count", 0)
else:
logging.warning(f"Unrecognized language model: {type(llm)}. Returning 0 tokens.")
total_tokens = 0
except Exception as e:
logging.error(f"Error retrieving total tokens: {e}")
total_tokens = 0
return total_tokens
def get_sources_and_chunks(sources_used, docs):
chunkdetails_list = []
sources_used_set = set(sources_used)
seen_ids_and_scores = set()
for doc in docs:
try:
source = doc.metadata.get("source")
chunkdetails = doc.metadata.get("chunkdetails", [])
if source in sources_used_set:
for chunkdetail in chunkdetails:
id = chunkdetail.get("id")
score = round(chunkdetail.get("score", 0), 4)
id_and_score = (id, score)
if id_and_score not in seen_ids_and_scores:
seen_ids_and_scores.add(id_and_score)
chunkdetails_list.append({**chunkdetail, "score": score})
except Exception as e:
logging.error(f"Error processing document: {e}")
result = {
'sources': sources_used,
'chunkdetails': chunkdetails_list,
}
return result
def get_rag_chain(llm, system_template=CHAT_SYSTEM_TEMPLATE):
try:
question_answering_prompt = ChatPromptTemplate.from_messages(
[
("system", system_template),
MessagesPlaceholder(variable_name="messages"),
(
"human",
"User question: {input}"
),
]
)
question_answering_chain = question_answering_prompt | llm
return question_answering_chain
except Exception as e:
logging.error(f"Error creating RAG chain: {e}")
raise
def format_documents(documents, model):
prompt_token_cutoff = 4
for model_names, value in CHAT_TOKEN_CUT_OFF.items():
if model in model_names:
prompt_token_cutoff = value
break
sorted_documents = sorted(documents, key=lambda doc: doc.state.get("query_similarity_score", 0), reverse=True)
sorted_documents = sorted_documents[:prompt_token_cutoff]
formatted_docs = list()
sources = set()
entities = dict()
global_communities = list()
for doc in sorted_documents:
try:
source = doc.metadata.get('source', "unknown")
sources.add(source)
if 'entities' in doc.metadata:
if 'entityids' in doc.metadata['entities']:
entities.setdefault('entityids', set()).update(doc.metadata['entities']['entityids'])
if 'relationshipids' in doc.metadata['entities']:
entities.setdefault('relationshipids', set()).update(doc.metadata['entities']['relationshipids'])
if 'communitydetails' in doc.metadata:
existing_ids = {entry['id'] for entry in global_communities}
new_entries = [entry for entry in doc.metadata["communitydetails"] if entry['id'] not in existing_ids]
global_communities.extend(new_entries)
formatted_doc = (
"Document start\n"
f"This Document belongs to the source {source}\n"
f"Content: {doc.page_content}\n"
"Document end\n"
)
formatted_docs.append(formatted_doc)
except Exception as e:
logging.error(f"Error formatting document: {e}")
return "\n\n".join(formatted_docs), sources,entities,global_communities
def process_documents(docs, question, messages, llm, model):
start_time = time.time()
try:
formatted_docs, sources, entitydetails, communities = format_documents(docs, model)
rag_chain = get_rag_chain(llm=llm)
ai_response = rag_chain.invoke({
"messages": messages[:-1],
"context": formatted_docs,
"input": question
})
result = {'sources': list(), 'nodedetails': dict(), 'entities': dict()}
node_details = {"chunkdetails":list(),"entitydetails":list(),"communitydetails":list()}
entities = {'entityids':list(),"relationshipids":list()}
sources_and_chunks = get_sources_and_chunks(sources, docs)
result['sources'] = sources_and_chunks['sources']
node_details["chunkdetails"] = sources_and_chunks["chunkdetails"]
entities.update(entitydetails)
result["nodedetails"] = node_details
result["entities"] = entities
content = ai_response.content
total_tokens = get_total_tokens(ai_response, llm)
predict_time = time.time() - start_time
logging.info(f"Final response predicted in {predict_time:.2f} seconds")
except Exception as e:
logging.error(f"Error processing documents: {e}")
raise
return content, result, total_tokens, formatted_docs
def retrieve_documents(doc_retriever, messages):
start_time = time.time()
try:
handler = CustomCallback()
docs = doc_retriever.invoke({"messages": messages},{"callbacks":[handler]})
transformed_question = handler.transformed_question
if transformed_question:
logging.info(f"Transformed question : {transformed_question}")
doc_retrieval_time = time.time() - start_time
logging.info(f"Documents retrieved in {doc_retrieval_time:.2f} seconds")
except Exception as e:
error_message = f"Error retrieving documents: {str(e)}"
logging.error(error_message)
docs = None
transformed_question = None
return docs,transformed_question
def create_document_retriever_chain(llm, retriever):
try:
logging.info("Starting to create document retriever chain")
query_transform_prompt = ChatPromptTemplate.from_messages(
[
("system", QUESTION_TRANSFORM_TEMPLATE),
MessagesPlaceholder(variable_name="messages")
]
)
output_parser = StrOutputParser()
splitter = TokenTextSplitter(chunk_size=5000, chunk_overlap=100)
embeddings_filter = EmbeddingsFilter(
embeddings=embedding_function,
similarity_threshold=0.10
)
pipeline_compressor = DocumentCompressorPipeline(
transformers=[splitter, embeddings_filter]
)
compression_retriever = ContextualCompressionRetriever(
base_compressor=pipeline_compressor, base_retriever=retriever
)
query_transforming_retriever_chain = RunnableBranch(
(
lambda x: len(x.get("messages", [])) == 1,
(lambda x: x["messages"][-1].content) | compression_retriever,
),
query_transform_prompt | llm | output_parser | compression_retriever,
).with_config(run_name="chat_retriever_chain")
logging.info("Successfully created document retriever chain")
return query_transforming_retriever_chain
except Exception as e:
logging.error(f"Error creating document retriever chain: {e}", exc_info=True)
raise
def initialize_neo4j_vector(graph):
try:
retrieval_query = VECTOR_GRAPH_SEARCH_QUERY
index_name = "vector"
keyword_index = "keyword"
node_label = "Chunk"
embedding_node_property = "embedding"
text_node_properties = ["text"]
if not retrieval_query or not index_name:
raise ValueError("Required settings 'retrieval_query' or 'index_name' are missing.")
if keyword_index:
neo_db = Neo4jVector.from_existing_graph(
embedding=embedding_function,
index_name=index_name,
retrieval_query=retrieval_query,
graph=graph,
search_type="hybrid",
node_label=node_label,
embedding_node_property=embedding_node_property,
text_node_properties=text_node_properties,
keyword_index_name=keyword_index
)
logging.info(f"Successfully retrieved Neo4jVector Fulltext index '{index_name}' and keyword index '{keyword_index}'")
else:
neo_db = Neo4jVector.from_existing_graph(
embedding=embedding_function,
index_name=index_name,
retrieval_query=retrieval_query,
graph=graph,
node_label=node_label,
embedding_node_property=embedding_node_property,
text_node_properties=text_node_properties
)
logging.info(f"Successfully retrieved Neo4jVector index '{index_name}'")
except Exception as e:
index_name = "vector"
logging.error(f"Error retrieving Neo4jVector index {index_name} : {e}")
raise
return neo_db
def create_retriever(neo_db, document_names,search_k, score_threshold,ef_ratio):
if document_names and "False":
retriever = neo_db.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={
'k': search_k,
'effective_search_ratio': ef_ratio,
'score_threshold': score_threshold,
'filter': {'fileName': {'$in': document_names}}
}
)
logging.info(f"Successfully created retriever with search_k={search_k}, score_threshold={score_threshold} for documents {document_names}")
else:
retriever = neo_db.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={'k': search_k,'effective_search_ratio': ef_ratio, 'score_threshold': score_threshold}
)
logging.info(f"Successfully created retriever with search_k={search_k}, score_threshold={score_threshold}")
return retriever
def get_neo4j_retriever(graph, document_names, score_threshold=0.5):
try:
neo_db = initialize_neo4j_vector(graph)
# document_names= list(map(str.strip, json.loads(document_names)))
search_k = 5
ef_ratio = int(os.getenv("EFFECTIVE_SEARCH_RATIO", "2")) if os.getenv("EFFECTIVE_SEARCH_RATIO", "2").isdigit() else 2
retriever = create_retriever(neo_db, document_names, search_k, score_threshold,ef_ratio)
return retriever
except Exception as e:
index_name = "vector"
logging.error(f"Error retrieving Neo4jVector index {index_name} or creating retriever: {e}")
raise Exception(f"An error occurred while retrieving the Neo4jVector index or creating the retriever. Please drop and create a new vector index '{index_name}': {e}") from e
def setup_chat(model, graph, document_names):
start_time = time.time()
try:
if model == "diffbot":
model = os.getenv('DEFAULT_DIFFBOT_CHAT_MODEL')
llm, model_name = get_llm(model=model)
logging.info(f"Model called in chat: {model} (version: {model_name})")
retriever = get_neo4j_retriever(graph=graph, document_names=document_names)
doc_retriever = create_document_retriever_chain(llm, retriever)
chat_setup_time = time.time() - start_time
logging.info(f"Chat setup completed in {chat_setup_time:.2f} seconds")
except Exception as e:
logging.error(f"Error during chat setup: {e}", exc_info=True)
raise
return llm, doc_retriever, model_name
def create_neo4j_chat_message_history(graph, session_id, write_access=True):
"""
Creates and returns a Neo4jChatMessageHistory instance.
"""
try:
if write_access:
history = Neo4jChatMessageHistory(
graph=graph,
session_id=session_id
)
return history
history = get_history_by_session_id(session_id)
return history
except Exception as e:
logging.error(f"Error creating Neo4jChatMessageHistory: {e}")
raise
# Final response logic
def process_chat_response(messages, history, question, model, graph, document_names):
try:
llm, doc_retriever, model_version = setup_chat(model, graph, document_names)
docs,transformed_question = retrieve_documents(doc_retriever, messages)
if docs:
content, result, total_tokens,formatted_docs = process_documents(docs, question, messages, llm, model)
else:
content = "I couldn't find any relevant documents to answer your question."
result = {"sources": list(), "nodedetails": list(), "entities": list()}
total_tokens = 0
formatted_docs = ""
ai_response = AIMessage(content=content)
messages.append(ai_response)
summarization_thread = threading.Thread(target=summarize_and_log, args=(history, messages, llm))
summarization_thread.start()
logging.info("Summarization thread started.")
# summarize_and_log(history, messages, llm)
metric_details = {"question":question,"contexts":formatted_docs,"answer":content}
return {
"session_id": "",
"message": content,
"info": {
# "metrics" : metrics,
"sources": result["sources"],
"model": model_version,
"nodedetails": result["nodedetails"],
"total_tokens": total_tokens,
"response_time": 0,
"entities": result["entities"],
"metric_details": metric_details,
},
"user": "chatbot"
}
except Exception as e:
logging.exception(f"Error processing chat response at {datetime.now()}: {str(e)}")
return {
"session_id": "",
"message": "Something went wrong",
"info": {
"metrics" : [],
"sources": [],
"nodedetails": [],
"total_tokens": 0,
"response_time": 0,
"error": f"{type(e).__name__}: {str(e)}",
"entities": [],
"metric_details": {},
},
"user": "chatbot"
}
def handle_chat(question, history, llm):
# Check if the LLM model is selected
if not llm:
return history + [{"role": "assistant", "content": "Please select your AI Sage (LLM model) to proceed."}]
# Create or retrieve the chat history from Neo4j
neo4j_history = create_neo4j_chat_message_history(graph, session_id=1, write_access=True)
messages = neo4j_history.messages
# Append the current user question to the history
messages.append(HumanMessage(content=question))
history.append({"role": "user", "content": question})
# Call the process_chat_response function with the updated parameters
response = process_chat_response(messages, neo4j_history, question, llm, graph, document_names=[])
# Extract the assistant's response text
assistant_response = response.get("message", "I couldn't process your request.")
# Append the assistant's response to the history
history.append({"role": "assistant", "content": assistant_response})
# Return the updated history
return history
# Define your custom CSS
custom_css = """
/* Custom CSS for the chat interface */
.gradio-container {
# background: #f0f0f0; /* Change background color */
border: 0
border-radius: 15px; /* Add border radius */
}
.primary.svelte-cmf5ev{
background: linear-gradient(90deg, #9848FC 0%, #DC8855 100%);
# background-clip: text;
# -webkit-background-clip: text;
# -webkit-text-fill-color: transparent;
}
.v-application .secondary{
background-color: #EEEEEE !important
}
"""
# Add the "Listen this in Hindi" button logic
def listen_in_hindi(response_text):
try:
if not response_text:
raise ValueError("No response text available to translate.")
# Step 1: Translate to Hindi
project_id = os.getenv("PROJECT_ID")
if not project_id:
raise ValueError("PROJECT_ID not set in environment.")
client = translate.TranslationServiceClient()
parent = f"projects/{project_id}/locations/global"
response = client.translate_text(
parent=parent,
contents=[response_text],
mime_type="text/plain",
source_language_code="en-US",
target_language_code="hi",
)
translated_text = response.translations[0].translated_text
# Step 2: Generate audio with ElevenLabs
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
if not ELEVENLABS_API_KEY:
raise ValueError("ELEVENLABS_API_KEY not set")
elevenlabs_client = ElevenLabs(api_key=ELEVENLABS_API_KEY)
audio_generator = elevenlabs_client.text_to_speech.convert(
text=translated_text,
voice_id="MF4J4IDTRo0AxOO4dpFR",
model_id="eleven_multilingual_v2",
output_format="mp3_44100_128",
)
audio_bytes = b"".join(audio_generator)
# Step 3: Save to a temp file and return path
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
f.write(audio_bytes)
audio_path = f.name
return audio_path, "Audio in Hindi generated successfully!"
except Exception as e:
logging.error(f"Error in 'listen_in_hindi': {e}")
return None, f"Error: {e}"
def get_last_bot_response(chat_history):
if not chat_history or not isinstance(chat_history, list):
print("Chat history is empty or invalid.")
return None
# Reverse iterate to find the last assistant message
for msg in reversed(chat_history):
if isinstance(msg, dict) and msg.get("role") == "assistant":
print(f"Last assistant response: {msg.get('content')}")
return msg.get("content")
print("No assistant response found.")
return None
with gr.Blocks(css=custom_css, theme="soft") as demo:
# Title and description
gr.Markdown(
"""
# Mahabharata AI Sage
Step into the epic world of the Mahabharata! Ask questions, explore characters, unravel mysteries,
and gain insights from the vast knowledge stored in the database. Let the wisdom of AI guide you!
"""
)
# Dropdown for LLM selection
llm_dropdown = gr.Dropdown(
choices=["openai-gpt-4o", "gemini-2.5-pro-experimental", "gemini-2.0-pro", "gemini-1.5-pro", "gemini-1.5-flash", "claude"],
label="Select Your AI Sage",
value=None,
interactive=True,
key="llm",
info="Choose the AI model to guide your journey through the Mahabharata."
)
# Textbox for user questions
question_textbox = gr.Textbox(
label="Ask Mahabharata AI Sage",
placeholder="Type your query about the Mahabharata here..."
)
# Chat interface
chatbot = gr.Chatbot(type="messages", height=450, label="Mahabharata Chat")
# Examples component
examples = gr.Examples(
examples=[
["Why did the Mahabharata war happen?"],
["Who killed Karna, and why?"],
["Why did the Pandavas have to go live in the forest for 12 years?"],
["Who was the wife of all five Pandavas, and how did that marriage come to be?"],
["What was the role of Krishna during the Kurukshetra war? Did he fight?"],
["Describe the relationship between Karna and Kunti. How did it affect the war?"],
["Who killed Ghatotakach?"],
["Who were the siblings of Karna?"],
["Why did Bhishma take a vow of celibacy, and how did that impact the throne of Hastinapur?"],
["Who killed Dronacharya and how was he tricked into giving up his weapons?"]
],
inputs=question_textbox, # Link examples to the textbox component
label="Example Questions"
)
# Submit button
submit_button = gr.Button("Submit")
# "Listen this in Hindi" button
listen_button = gr.Button("Listen to this in Hindi", interactive=False)
audio_output = gr.Audio(label="Hindi Audio", type="filepath")
status_output = gr.Textbox(label="Status")
# Define the interaction logic
submit_button.click(
fn=handle_chat,
inputs=[question_textbox, chatbot, llm_dropdown], # Pass the question, chat history, and LLM model
outputs=chatbot # Update the chatbot with the new chat history
).then(
fn=lambda x: gr.update(interactive=True),
inputs=None,
outputs=listen_button
)
# Define the interaction logic for the "Listen this in Hindi" button
listen_button.click(
fn=lambda chat_history: listen_in_hindi(get_last_bot_response(chat_history)),
inputs=chatbot,
outputs=[audio_output, status_output]
)
question_textbox.change(
fn=lambda: gr.update(interactive=False),
inputs=None,
outputs=listen_button
)
# Launch the interface
if __name__ == "__main__":
demo.launch() |