Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
from ultralytics import ASSETS, YOLO
|
5 |
+
import tempfile
|
6 |
+
import numpy as np
|
7 |
+
import time
|
8 |
+
|
9 |
+
def load_model(model_name):
|
10 |
+
"""Loads the specified YOLO model for either segmentation or detection."""
|
11 |
+
if model_name == "yolov9c-seg":
|
12 |
+
model_path = "yolov9c-seg.pt"
|
13 |
+
elif model_name == "yolov9e-seg":
|
14 |
+
model_path = "yolov9e-seg.pt"
|
15 |
+
elif model_name == "yolov9c":
|
16 |
+
model_path = "yolov9c.pt"
|
17 |
+
elif model_name == "yolov9e":
|
18 |
+
model_path = "yolov9e.pt"
|
19 |
+
else:
|
20 |
+
raise ValueError(f"Invalid model name: {model_name}")
|
21 |
+
|
22 |
+
return YOLO(model_path)
|
23 |
+
|
24 |
+
def predict_image(img, conf_threshold, iou_threshold, task="detection", model_name=None):
|
25 |
+
"""Predicts and plots results in an image using YOLO model with adjustable confidence and IOU thresholds."""
|
26 |
+
if task == "segmentation":
|
27 |
+
if not model_name:
|
28 |
+
model_name = "yolov9c-seg"
|
29 |
+
elif model_name not in ["yolov9c-seg", "yolov9e-seg"]:
|
30 |
+
raise ValueError(f"Invalid model name for segmentation: {model_name}")
|
31 |
+
elif task == "detection":
|
32 |
+
if not model_name:
|
33 |
+
model_name = "yolov9c"
|
34 |
+
elif model_name not in ["yolov9c", "yolov9e"]:
|
35 |
+
raise ValueError(f"Invalid model name for detection: {model_name}")
|
36 |
+
else:
|
37 |
+
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.")
|
38 |
+
|
39 |
+
model = load_model(model_name)
|
40 |
+
results = model.predict(
|
41 |
+
source=img,
|
42 |
+
conf=conf_threshold,
|
43 |
+
iou=iou_threshold,
|
44 |
+
show_labels=True,
|
45 |
+
show_conf=True,
|
46 |
+
imgsz=640,
|
47 |
+
)
|
48 |
+
|
49 |
+
for r in results:
|
50 |
+
im_array = r.plot()
|
51 |
+
im = Image.fromarray(im_array[..., ::-1])
|
52 |
+
|
53 |
+
return im
|
54 |
+
|
55 |
+
def predict_image_with_task(img, conf_threshold, iou_threshold, task, model_name):
|
56 |
+
|
57 |
+
return predict_image(img, conf_threshold, iou_threshold, task, model_name)
|
58 |
+
|
59 |
+
image_iface = gr.Interface(
|
60 |
+
fn=predict_image_with_task,
|
61 |
+
inputs=[
|
62 |
+
gr.Image(type="pil", label="Upload Image"),
|
63 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
64 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
65 |
+
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"),
|
66 |
+
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"),
|
67 |
+
],
|
68 |
+
outputs=gr.Image(type="pil", label="Result"),
|
69 |
+
title="X509",
|
70 |
+
description="Upload images for inference. Choose task and corresponding model.",
|
71 |
+
examples=[
|
72 |
+
["cars.jpg", 0.25, 0.45, "detection", "yolov9c"],
|
73 |
+
],
|
74 |
+
)
|
75 |
+
|
76 |
+
def predict_video(video_path, conf_threshold, iou_threshold, task="detection", model_name=None):
|
77 |
+
"""Predicts and processes video frames using YOLO model with adjustable confidence and IOU thresholds."""
|
78 |
+
if task == "segmentation":
|
79 |
+
if not model_name:
|
80 |
+
model_name = "yolov9c-seg"
|
81 |
+
elif model_name not in ["yolov9c-seg", "yolov9e-seg"]:
|
82 |
+
raise ValueError(f"Invalid model name for segmentation: {model_name}")
|
83 |
+
elif task == "detection":
|
84 |
+
if not model_name:
|
85 |
+
model_name = "yolov9c"
|
86 |
+
elif model_name not in ["yolov9c", "yolov9e"]:
|
87 |
+
raise ValueError(f"Invalid model name for detection: {model_name}")
|
88 |
+
else:
|
89 |
+
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.")
|
90 |
+
|
91 |
+
model = load_model(model_name)
|
92 |
+
cap = cv2.VideoCapture(video_path)
|
93 |
+
|
94 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
95 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
96 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
97 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
98 |
+
|
99 |
+
temp_video_path = tempfile.mktemp(suffix=".mp4")
|
100 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height))
|
101 |
+
|
102 |
+
frame_count = 0
|
103 |
+
start_time = time.time()
|
104 |
+
|
105 |
+
while cap.isOpened():
|
106 |
+
ret, frame = cap.read()
|
107 |
+
if not ret:
|
108 |
+
break
|
109 |
+
frame_count += 1
|
110 |
+
|
111 |
+
elapsed_time = time.time() - start_time
|
112 |
+
current_fps = frame_count / elapsed_time
|
113 |
+
|
114 |
+
pil_img = Image.fromarray(frame[..., ::-1])
|
115 |
+
results = model.predict(
|
116 |
+
source=pil_img,
|
117 |
+
conf=conf_threshold,
|
118 |
+
iou=iou_threshold,
|
119 |
+
show_labels=True,
|
120 |
+
show_conf=True,
|
121 |
+
imgsz=640,
|
122 |
+
)
|
123 |
+
|
124 |
+
for r in results:
|
125 |
+
im_array = r.plot()
|
126 |
+
processed_frame = Image.fromarray(im_array[..., ::-1])
|
127 |
+
frame = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
|
128 |
+
|
129 |
+
cv2.putText(frame, f"FPS: {current_fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
130 |
+
|
131 |
+
out.write(frame)
|
132 |
+
|
133 |
+
cap.release()
|
134 |
+
out.release()
|
135 |
+
|
136 |
+
return temp_video_path
|
137 |
+
|
138 |
+
def predict_video_with_task(video_path, conf_threshold, iou_threshold, task, model_name):
|
139 |
+
|
140 |
+
return predict_video(video_path, conf_threshold, iou_threshold, task, model_name)
|
141 |
+
|
142 |
+
video_iface = gr.Interface(
|
143 |
+
fn=predict_video_with_task,
|
144 |
+
inputs=[
|
145 |
+
gr.Video(label="Upload Video", interactive=True),
|
146 |
+
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
|
147 |
+
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
|
148 |
+
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"),
|
149 |
+
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"),
|
150 |
+
],
|
151 |
+
outputs=gr.File(label="Result"),
|
152 |
+
title="X509",
|
153 |
+
description="Upload video for inference. Choose task and corresponding model.",
|
154 |
+
examples=[
|
155 |
+
["VID_20240517112011.mp4", 0.25, 0.45, "detection", "yolov9c"],
|
156 |
+
]
|
157 |
+
)
|
158 |
+
|
159 |
+
production = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
|
160 |
+
|
161 |
+
if __name__ == '__main__':
|
162 |
+
production.launch()
|