|
|
|
|
|
|
|
|
|
|
|
import asyncio |
|
import docx |
|
import gradio as gr |
|
import httpx |
|
import json |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import pytesseract |
|
import random |
|
import requests |
|
import threading |
|
import uuid |
|
|
|
from PIL import Image |
|
from pathlib import Path |
|
from pptx import Presentation |
|
|
|
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") |
|
|
|
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER") |
|
INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA") |
|
|
|
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}")) |
|
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM") |
|
|
|
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h] |
|
LINUX_SERVER_HOSTS_MARKED = set() |
|
LINUX_SERVER_HOSTS_ATTEMPTS = {} |
|
|
|
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k] |
|
LINUX_SERVER_PROVIDER_KEYS_MARKED = set() |
|
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {} |
|
|
|
LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(","))) |
|
|
|
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 8)} |
|
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)} |
|
|
|
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) |
|
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) |
|
MODEL_CHOICES = list(MODEL_MAPPING.values()) |
|
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) |
|
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None |
|
|
|
META_TAGS = os.getenv("META_TAGS") |
|
|
|
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]")) |
|
|
|
ACTIVE_CANDIDATE = None |
|
|
|
class SessionWithID(requests.Session): |
|
def __init__(self): |
|
super().__init__() |
|
self.session_id = str(uuid.uuid4()) |
|
|
|
def create_session(): |
|
return SessionWithID() |
|
|
|
def get_available_items(items, marked): |
|
a = [i for i in items if i not in marked] |
|
random.shuffle(a) |
|
return a |
|
|
|
def marked_item(item, marked, attempts): |
|
marked.add(item) |
|
attempts[item] = attempts.get(item, 0) + 1 |
|
if attempts[item] >= 3: |
|
def remove(): |
|
marked.discard(item) |
|
attempts.pop(item, None) |
|
threading.Timer(300, remove).start() |
|
|
|
def get_model_key(display): |
|
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY) |
|
|
|
def extract_file_content(fp): |
|
ext = Path(fp).suffix.lower() |
|
c = "" |
|
try: |
|
if ext == ".pdf": |
|
with pdfplumber.open(fp) as pdf: |
|
for p in pdf.pages: |
|
t = p.extract_text() or "" |
|
c += t + "\n" |
|
elif ext in [".doc", ".docx"]: |
|
d = docx.Document(fp) |
|
for para in d.paragraphs: |
|
c += para.text + "\n" |
|
elif ext in [".xlsx", ".xls"]: |
|
df = pd.read_excel(fp) |
|
c += df.to_csv(index=False) |
|
elif ext in [".ppt", ".pptx"]: |
|
prs = Presentation(fp) |
|
for s in prs.slides: |
|
for sh in s.shapes: |
|
if hasattr(sh, "text") and sh.text: |
|
c += sh.text + "\n" |
|
else: |
|
c = Path(fp).read_text(encoding="utf-8") |
|
except Exception as e: |
|
c = f"{fp}: {e}" |
|
return c.strip() |
|
|
|
async def fetch_response_async(host, key, model, msgs, cfg, sid): |
|
for t in [60, 80, 120, 240]: |
|
try: |
|
async with httpx.AsyncClient(timeout=t) as client: |
|
r = await client.post(host, json={"model": model, "messages": msgs, **cfg, "session_id": sid}, headers={"Authorization": f"Bearer {key}"}) |
|
if r.status_code in LINUX_SERVER_ERRORS: |
|
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) |
|
return None |
|
r.raise_for_status() |
|
j = r.json() |
|
if isinstance(j, dict) and j.get("choices"): |
|
ch = j["choices"][0] |
|
if ch.get("message") and isinstance(ch["message"].get("content"), str): |
|
return ch["message"]["content"] |
|
return None |
|
except: |
|
continue |
|
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) |
|
return None |
|
|
|
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt): |
|
if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS): |
|
return RESPONSES["RESPONSE_3"] |
|
if not hasattr(sess, "session_id"): |
|
sess.session_id = str(uuid.uuid4()) |
|
model_key = get_model_key(model_display) |
|
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG) |
|
msgs = [{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a] |
|
if model_key == DEFAULT_MODEL_KEY and INTERNAL_TRAINING_DATA: |
|
prompt = INTERNAL_TRAINING_DATA |
|
else: |
|
prompt = custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT) |
|
msgs.insert(0, {"role": "system", "content": prompt}) |
|
msgs.append({"role": "user", "content": user_input}) |
|
global ACTIVE_CANDIDATE |
|
if ACTIVE_CANDIDATE: |
|
res = await fetch_response_async(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], model_key, msgs, cfg, sess.session_id) |
|
if res: |
|
return res |
|
ACTIVE_CANDIDATE = None |
|
keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) |
|
hosts = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_ATTEMPTS) |
|
cands = [(h, k) for h in hosts for k in keys] |
|
random.shuffle(cands) |
|
for h, k in cands: |
|
res = await fetch_response_async(h, k, model_key, msgs, cfg, sess.session_id) |
|
if res: |
|
ACTIVE_CANDIDATE = (h, k) |
|
return res |
|
return RESPONSES["RESPONSE_2"] |
|
|
|
async def respond_async(multi, history, model_display, sess, custom_prompt): |
|
msg = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])} |
|
if not msg["text"] and not msg["files"]: |
|
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess |
|
return |
|
inp = "" |
|
for f in msg["files"]: |
|
p = f["name"] if isinstance(f, dict) and "name" in f else f |
|
inp += f"{Path(p).name}\n\n{extract_file_content(p)}\n\n" |
|
if msg["text"]: |
|
inp += msg["text"] |
|
history.append([inp, ""]) |
|
ai = await chat_with_model_async(history, inp, model_display, sess, custom_prompt) |
|
history[-1][1] = "" |
|
def to_str(d): |
|
if isinstance(d, (str, int, float)): return str(d) |
|
if isinstance(d, bytes): return d.decode("utf-8", errors="ignore") |
|
if isinstance(d, (list, tuple)): return "".join(map(to_str, d)) |
|
if isinstance(d, dict): return json.dumps(d, ensure_ascii=False) |
|
return repr(d) |
|
for c in ai: |
|
history[-1][1] += to_str(c) |
|
await asyncio.sleep(0.0001) |
|
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess |
|
|
|
def change_model(new): |
|
visible = new != MODEL_CHOICES[0] |
|
default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT) |
|
return [], create_session(), new, default, gr.update(value=default, visible=visible) |
|
|
|
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: |
|
user_history = gr.State([]) |
|
user_session = gr.State(create_session()) |
|
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "") |
|
custom_prompt_state = gr.State("") |
|
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) |
|
with gr.Row(): |
|
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) |
|
with gr.Accordion(AI_TYPES["AI_TYPE_6"], open=False): |
|
model_dropdown = gr.Dropdown(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) |
|
system_prompt = gr.Textbox(label=AI_TYPES["AI_TYPE_7"], lines=2, interactive=True, visible=False) |
|
model_dropdown.change(fn=change_model, inputs=[model_dropdown], outputs=[user_history, user_session, selected_model, custom_prompt_state, system_prompt]) |
|
system_prompt.change(fn=lambda x: x, inputs=[system_prompt], outputs=[custom_prompt_state]) |
|
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, custom_prompt_state], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER) |
|
jarvis.launch(max_file_size="1mb") |
|
|